

A new fundemental solar process has been introduced. This **STEP** process efficiently removes carbon from the atmosphere and generates the staples needed by society, ranging from fuels, to metals, bleach and construction materials, at high solar efficiency and without carbon dioxide generation. By using the full spectrum of sunlight, **STEP** captures more solar energy than the most efficient solar cell or photoelectrochemical processes.

STEP's concentrated sunlight drives new high temperature molten CO₂-free syntheses at industrial production rates.

Included are Popular Write-ups (in order) of:

STEP Fertilizer

STEP Fuels

STEP Cement

STEP Carbon

STEP Iron

STEP Hydrogen

The Licht research group has taken on the challenge of a comprehensive solution to climate change. We're working towards changing today's fossil fuel, to a renewable chemical economy, replacing the largest greenhouse gas emitters, including iron & fuel production, by new, inexpensive, solar, CO₂-free, chemistries.

Further information available at Licht research group sites: http://home.gwu.edu/~slicht/index.html

CHEMISTRY

New recipe produces ammonia from air, water, and sunlight

Catalytic approach could eliminate CO₂ emissions from the key step in making fertilizer

By Robert F. Service

he ability to turn the nitrogen in air into fertilizer has enabled farmers to feed billions more people than our planet could otherwise support. But it's costly. The massive chemical plants that produce ammoniastarting material for fertilizer-

the consume up to 5% of the world's natural gas and belch out hundreds of millions of tonnes of carbon dioxide (CO_a) annually. Now, chemists have come up with an alternative approach drawing on renewable energy. On page 637, they report using heat and electricity produced from sunlight to stitch together nitrogen from the air and hydrogen from water to make ammonia, all without emitting a molecule of CO_a.

"It's an important scientific advance," says Morris Bullock, a chemist at the Pacific Northwest National Laboratory in Richland, Washington. Still, says Ellen Stechel, a chemical physicist at Arizona State University, Tempe, the question is whether the process's "very respectable" efficiency in the lab can be scaled up to compete with the current ammonia industry.

Nitrogen molecules in air are inert, held together

by triple bonds that aren't easily broken. In the early 1900s, the German chemists Fritz Haber and Carl Bosch figured out how to make nitrogen more biologically reactive. They used high pressures and temperatures to sever those bonds and weld nitrogen atoms to hydrogen to make ammonia, NH_a. Today, that reaction produces hundreds of millions of tons of ammonia each year.

Yet the large amounts of energy required for this reaction have prompted a number of researchers to look for alternatives. One popular approach has been to search for catalysts that break nitrogen's triple bonds and make ammonia when fed electricity. So far, however, even the best such catalysts harness only about 1% of the electrons for forming ammonia's bonds.

Stuart Licht, a chemist at George Washington University in Washington, D.C., tackled

A vital chemical with major costs

Millions of tons of N₂ extracted from air annually to produce ammonia for fertilize

Percentage of world energy used for ammonia production

Billion dollars, the estimated market for ammonia in 2019 the problem from the opposite direction. He spotted work on fuel cells that break down ammonia into nitrogen and hydrogen, generating electricity in the process. A new electrolyte, which helps charged ions move in the device, improved the efficiency of the fuel cell. colleagues Licht and tried using the same electrolyte-a molten mix-

ture of potassium and sodium hydroxide-in reverse to synthesize ammonia. It worked. In their reactor, they combined the electrolyte with catalytic nanoparticles made from iron oxide, then fed in water, air, heat, and electricity. The reactor split water, snapped nitrogen's strong bonds, and welded the components into ammonia and molecular hydrogen (H_a)-itself a fuel. All told, 65% of the electricity wound up stored in chemical bonds: 35% in ammonia and 30% in H. molecules. Though impressive, the result "still has a

long way to go" to replace the Haber-Bosch process, says James Miller, a chemist at Sandia National Laboratories in Albuquerque, New Mexico, who specializes in using solar energy to make chemical fuels. The reactor is most efficient when fed only a trickle of electricity. Licht and his team will need to boost the current 50-fold to match related industrial processes, Stechel says. Still, Miller adds, "he's on the right track."

Low-emission ammonia offers food and climate solution

7 August 2014 Andy Extance

Stuart Licht's team is working on new ammonia production technology in its 'Solar Thermal Electrochemical Production' approach © AAAS

Chemists in the US have discovered a low cost way to make ammonia that could help feed the world's growing population without contributing to global warming. <u>Stuart Licht</u>'s team at George Washington University in Washington, DC, has produced <u>ammonia directly from electricity, air and steam</u>. 'Unlike the conventional process, which has a massive carbon footprint, this produces ammonia for fertiliser without CO₂ emissions,' says Licht.

Ammonia has transformed our world, helping grow more food, but also adding greenhouse gases. <u>Developed in the early 20th century</u> and still dominant, the Haber process produces it by reacting nitrogen – the major constituent of Earth's air – with hydrogen using a catalyst like iron. That takes high temperatures and pressures, using around 2% of the world's energy. Today the hydrogen comes from reacting methane – around 3-5% of the total consumed – with steam, which also produces vast amounts of carbon dioxide.

In recent years Licht's team has developed 'Solar Thermal Electrochemical Production' (STEP), avoiding CO₂ emissions in various processes, such as <u>cement</u> and <u>iron</u> manufacturing. One part of this work has been producing hydrogen from water by passing electrical current through molten salts like sodium hydroxide. Licht then read about a fuel cell made by <u>Jason Ganley</u> at Colorado School of Mines that generated electricity by reacting ammonia with air in molten hydroxide. The George Washington researchers first tried simply reversing that cell, without success. 'A key to ammonia production was the addition of nano-iron oxide,' Licht says.

Whereas previous attempts based on electrolysing water and air converted less than 1% of the electricity used to ammonia, the new approach converts 35%. 'Less than 100% efficiency is not necessarily a loss to the process,' Licht stresses. 'In this case you consume current to co-generate hydrogen, which is a useful fuel.' However, the iron oxide catalyst clumped together after a few hours' use, dramatically reducing the cell's efficiency, although Licht's team is already preparing to publish a more stable design.

As well as avoiding direct CO₂ emissions by getting hydrogen from steam not methane, energy consumption is two-thirds that of the Haber process. Licht expects to reduce this further and has also incorporated the approach into a system exploiting thermal energy collected from the Sun.

Ganley, who has previously worked with Licht but not on this study, says it could have 'far-reaching benefits'. 'The electrolyte is very inexpensive and highly conductive, and the reactants are carbon-free,' he explains.

Single-pot electrolytic synthesis of hydrogen and carbon fuels

(*Nanowerk Spotlight*) The search for non-fossil based, low carbon footprint fuels includes several approaches to using solar energy. Among them, artificial photosynthesis - using solar energy to split water generating hydrogen and oxygen - is often considered a 'Holy Grail' of chemistry which can offer a clean and portable source of energy supply as durable as the sunlight. Although massive efforts have been made in this area, many researchers have faced different types of challenges reaching from fundamental sciences to engineering and most of these processes operate at much less than 10% solar efficiency.

Back in 2002, Stuart Licht a professor of Chemistry, presented a solar electrochemical theory that the full spectrum of sunlight was sufficient to split water to hydrogen fuel at over 50% solar conversion efficiency. They named this theory *STEP* (the Solar Thermal Electrochemical Process) and demonstrated it, among others, for the direct removal of atmospheric carbon dioxide (New solar-powered process removes carbon dioxide from the air and stores it as solid carbon), the CO_2 -free production of iron (Reinventing iron production using clean renewable energy instead of coal) and calcium oxide (Solar-powered cement production without carbon dioxide emissions).

STEP is a different type of solar conversion process that, rather than electricity, forms useful chemicals as the product, and uses the sun's thermal energy to heat and lower the energy of reactions, and the sun's visible energy to provide electrical current to drive the chemical reactions.

"The general use of solar thermal energy to lower the potential of useful electrolyses can be applied to liquid, gas, or solid phase electrolyte cells," Licht explains to Nanowerk. "In general, we have found an energy advantage in applying STEP to liquid, molten electrolyte cells." (We have reported on this concept in two previous *Nanowerk Spotlights*: A new class of high-energy rechargeable batteries - molten air and Improved molten air battery operates at lower temperatures).

Licht's group in the Department of Chemistry and Solar Institute at George Washington University has now successfully attempted to simultaneously co-generate hydrogen and solid carbon fuels from a mixed hydroxide/carbonate electrolyte in a 'single-pot' electrolytic synthesis at temperatures below 650°C. + III http://www.nanowerk.com/spotlight/spotid=38588.php

This is the first demonstration of the co-generation of hydrogen and carbon fuels at a single electrode and from a molten electrolyte. Here, fuel production can be driven entirely by solar energy using the STEP process in which solar thermal energy increases the system temperature to decrease electrolysis potentials.

"The functionality to cogenerate hydrogen and carbon fuel at high current densities of several hundreds of mA/cm², at low electrolysis potentials, and from water and carbon dioxide starting points, provides a significant step towards the development of renewable fuels," says Licht.

The team has reported their findings in the December 23, 2014 online edition of *Advanced Energy Materials* ("A One-Pot Synthesis of Hydrogen and Carbon Fuels from Water and Carbon Dioxide").

The core advance of this work is the demonstration that both water and carbon dioxide can be absorbed and split in a single medium - a melted mixture of carbonate and hydroxide salts - providing a single chamber, which simultaneously splits water into hydrogen and carbon dioxide into hydrogen and carbon.

SIEP TUELS (the solar thermal electrochemical process for fuels) uses inexpensive electrodes (nickel and steel) immersed in a molten electrolyte and can be heated by solar thermal and driven by solar photocurrent.

A second advance in this study is the demonstration of a specialized barium/calcium salt that stabilizes the oxygen-generating nickel electrode.

"STEP fuels are scaleable and we are in the process of scaling our electrolysis chamber from amps to hundreds of amps," notes Licht. "The demonstrated co-synthesis of hydrogen and solid carbon in this study, STEP organic ("STEP organic synthesis: an efficient solar, electrochemical process for the synthesis of benzoic acid"), as well as our previous synthesis of carbon monoxide fuel from carbon dioxide in these same molten salts suggests that the one-pot efficient synthesis of higher order fuels (hydrocarbons) are viable.

By Michael Berger. Copyright © Nanowerk

Schematic of the process. (Image: Licht group, George Washington University)

Green Car Congress

Energy, technologies, issues and policies for sustainable mobility

+ Chttp://www.greencarcongress.com/2014/12/20141230-licht.html

GWU team uses one-pot process to co-generate H2 and solid carbon from water and CO2; solar fuels

30 December 2014

A team at George Washington University led by Professor Stuart Licht has simultaneously co-generated hydrogen and solid carbon fuels from water and CO2 using a mixed

hydroxide/carbonate electrolyte in a "single-pot" electrolytic synthesis at temperatures below 650 °C. The work is a further development of their work with STEP (solar thermal electrochemical process)-an efficient solar chemical process, based on a synergy of solar thermal and produces H₂ and solid carbon from endothermic electrolyses, introduced by Licht and his colleagues in 2009. (Earlier post, earlier post.) (In short,

One-pot electrolytic process water and CO2. Li et al. Click to enlarge.

STEP uses solar thermal energy to increase the system temperature to decrease electrolysis potentials.)

Licht and his colleagues over the past few years have delineated the solar, optical, and electronic components of STEP. In this study, they focused on the electrolysis component for STEP fuel, producing hydrogen and graphitic carbon from water and carbon dioxide. A paper on the new work is published in the journal Advanced Energy Materials.

Molten hydroxides are important as conductive, high-current, low-electrolysispotential electrolytes for water splitting to generate hydrogen, the team notes in the paper. The Coulombic efficiency of electrolytic water splitting, η_{H2} (moles H_2 generated per 2 Faraday of applied charge), approaches 100% in low melting point, mixed alkali molten hydroxides at temperatures up to 300 °C.

In the study, they achieve the synthesis of hydrogen and carbon fuel using a mixed, hydroxide/carbonate electrolyte, nickel anode (generating O₂), and nickel or steel cathode (generating graphite and hydrogen). Low hydroxide fractions in the electrolyte ensure efficient carbon formation, while high fractions form only H₂ at the cathode; added barium and lithium salts ensure effective nickel anode stability.

The general use of solar thermal energy to lower the potential of useful electrolyses can be applied to liquid, gas, or solid phase electrolyte cells. In general, we have found an energy advantage in applying STEP to liquid, molten electrolyte cells. Such cells can be driven by thermal sunlight to high temperature accommodating both facile kinetics at high current density and a lower endothermic electrolysis potential. Importantly, molten salt cells can often accommodate high reactant concentrations, which lead to a further decrease in the electrolysis potential ... We have previously demonstrated molten hydroxide electrolytes for solar water splitting to hydrogen fuel, and molten carbonate electrolytes for solar carbon dioxide splitting to carbon and carbon monoxide fuels.

... In this study, we focus on the electrolysis component for STEP fuel. Specifically, we present the first molten electrolyte sustaining electrolytic co-production of both hydrogen and carbon products in a single cell.

... We demonstrate here the functionality of new lithium-bariumcalcium hydroxide carbonate electrolytes to co-generate hydrogen and carbon fuel in a single electrolysis chamber at high current densities of several hundreds of mA/cm², at low electrolysis potentials, and from water and CO₂ starting points, which provides a significant step towards the development of renewable fuels.

-Li et al.

The one-pot co-synthesis of hydrogen and carbon and C was carried using a new Li1.6Ba0.3Ca0.1CO3 electrolyte with LiOH as hydroxide component. The synthesis has high coulombic efficiency with $\approx 62\%$ of the current generating H₂ and 20%

generating carbon at an applied electrolysis current of 2 A through the 3.75 cm² planar nickel anode and nickel cathode.

The authors noted that the H₂ Coulombic efficiency in the LiOH/Li_{1.6}Ba_{0.3}Ca_{0.1}CO₃ electrolyte was higher than that observed at 500 °C in a pure barium hydroxide electrolyte, and which had not permitted the co-generation of fuels.

Resources

• Li, F.-F., Liu, S., Cui, B., Lau, J., Stuart, J., Wang, B. and Licht, S. (2014), "A One-Pot Synthesis of Hydrogen and Carbon Fuels from Water and Carbon Dioxide," Adv. Energy Mater. doi: 10.1002/aenm.201401791

technology review

Published by MIT

ENERGY

New Cement-Making Method Could Slash Carbon Emissions

The proof-of-concept device concentrates sunlight to break apart limestone.

FRIDAY, MAY 11, 2012 BY KEVIN BULLIS

Researchers at George Washington University have bolted together an ungainly contraption that they say efficiently uses the energy in sunlight to power a novel chemical process to make lime, the key ingredient in cement, without emitting carbon dioxide. The device puts to work about half of the energy in sunlight (solar panels, in comparison, convert just 15 percent of the energy in sunlight into electricity).

Cement production alone emits 5 to 6 percent of total man-made greenhouse gases, and most of that comes from producing lime. Some of the greenhouse-gas emissions from conventional cement production come from using fossil fuels to heat up limestone to high temperatures—about 1,500 °C. Replacing fossil fuels with renewable energy is straightforward, but not necessarily economical. The new work focuses on a harder problem. About 60 percent of the carbon-dioxide emissions from cement production is inherent to the process. Lime is made by heating up limestone—that is, calcium carbonate—until it releases carbon dioxide.

The new process changes the chemistry. Rather than emitting carbon dioxide, it converts the gas, using a combination of heat and electrolysis to produce oxygen and either carbon or carbon monoxide, depending on the temperatures employed. Both carbon and carbon monoxide are useful products that might otherwise have been made using fossil fuels.

To make the electrolysis practical, the researchers mixed solid calcium carbonate with liquid lithium carbonate, which is molten at the temperatures that are optimal for the process—about 900 °C. The liquid form is conducive to electrolysis. The elevated temperatures lower the amount of electricity needed to electrolyze, and cause the lime to precipitate out of the mixture, making it easy to collect. (At lower temperatures, the lime is more soluble, so it doesn't precipitate.)

To demonstrate the process, the researchers built a device that includes three Fresnel lenses for concentrating sunlight. Two of those heat up the mixture of lithium carbonate and limestone. Those are the largest lenses. Their relative size reflects the fact that most of the energy needed for the process goes to heating up the mixture. The third, smaller lens focuses light on a high-efficiency solar cell, which provides the relatively small amount of electricity needed to electrolyze the hot carbonate mixture.

Rock splitter: Two large, Fresnel lenses concentrate sunlight to heat limestone up to 900 °C. smaller lens concentrates light onto a small solar cell that generates enough electricity to break apart limestone, forming lime for cement, along with oxygen and graphite. Stuart Licht

The device is just a proof of concept, not ready for commercialization. It's small, and it works only when it's sunny—and intermittent operation isn't ideal for an industrial process. The researchers propose using molten salt to store heat, a system used in some solar thermal power plants. That would allow the process to run day and night. The electricity could come from using the heat to generate steam to spin a turbine, as in a solar thermal power plant, or from any other source of electricity.

Stuart Licht, the professor of chemistry at George Washington University who led the work, estimates that the process, if it can be scaled up, could be cheaper than conventional lime production. He says it's more efficient than solar panels because it uses parts of the solar spectrum that solar cells can't efficiently convert into electricity.

The process still requires a lot of energy, says C12 Energy CEO Kurt House, who has developed low-carbon concrete production processes. "It comes down to how you want to use solar energy," he says. "If the efficiency is as good as they say it is, then I agree, this is very, very interesting. But I'm skeptical."

Solar-powered cement production without carbon dioxide emissions

Posted: April 11, 2012

(*Nanowerk Spotlight*) The global cement industry is currently one of the largest single emitter of carbon dioxide, generating on average about 830 kg of this greenhouse gas for each 1000 kg of cement produced (source: International Energy Agency 2007, Tracking Industrial Energy Efficiency and CO₂ Emissions; pdf). Considering that the worldwide annual production of cement is a whopping 3.8 trillion kg (source), the cement industry alone accounts for approximately 5-6% of man-made CO₂ emissions.

In a previous Nanowerk Spotlight ("New solar-powered process removes CO₂ from the air and stores it as solid carbon") we introduced a novel solar conversion process, combining electronic and chemical pathways, for carbon dioxide capture. This STEP (Solar Thermal Electrochemical Production) process proactively converts anthropogenic carbon dioxide generated in burning fossil fuels, as well as eliminates carbon dioxide emissions associated with the generation of metals and bleach. In a subsequent *Spotlight* ("Reinventing iron production using clean renewable energy instead of coal") we showed how the STEP process could be used as an effective new carbon-dioxide-free process for iron production.

The research team, led by Stuart Licht, a professor of chemistry at George Washington University, has now presented a solar-powered process to produce cement without any carbon dioxide. In a paper (accepted manuscript) in the April 5, 2012 online edition of *Chemical Communications* ("STEP Cement: Solar Thermal Electrochemical Production of CaO without CO₂ emission"), they show that STEP-produced cement operates at solar energy conversion efficiencies higher than that in any solar photovoltaic.

Conventional thermal decomposition production of lime (left) versus STEP direct solar conversion of calcium carbonate to calcium oxide (right) eliminating CO₂. (Image: Dr. Licht, University of Washington) "In cement production, the majority of CO₂ emissions occurs during the decarbonation of limestone (CaCO₃) to lime (CaO) and the remainder (30 to 40%) from burning fossil fuels, such as coal, to heat the kiln reactors to ~900°C," Licht explains to Nanowerk. " Our study presents a low-energy, entirely new synthetic route to form CaO without any carbon dioxide emission, and is based on unexpected solubility behavior in molten salts. This synthesis can be accomplished without solar energy, and without our new STEP process, but is particularly attractive when combined with this new solar process."

"Alternatively" he adds, "the new synthesis could be used by industry to produce cement using any non-solar, renewable or nuclear energy without any CO₂ release, or greatly decrease CO₂ if fossil fuels were used to drive the new cement production – in the latter, worst case scenario, the products are lime, graphite and oxygen; there is still no CO₂ product, but CO₂ would be used in the energy to drive the process."

In STEP cement limestone undergoes low energy electrolysis to produce lime, O₂ and reduced carbonate without carbon dioxide emission.

"There have been proposals to form cement which recaptures or sequesters some of the CO₂ emitted during its production process" says Licht. "This, however, is the first process which forms no CO₂ while producing cement."

In this new technique, the kiln limestone-to-lime process is replaced by an electrolysis process which changes the product of the reaction of the limestone as it is converted to lime. Rather than producing carbon dioxide, it reduces the carbon dioxide (adds electrons) and produces only oxygen and graphite (which can be readily stored as solid carbon) or CO for fuels, plastics or pharmaceuticals. This is accomplished at low energy and high throughput.

The researchers plan to scale up the outdoor STEP cement prototype and in general want to increase the portfolio of useful chemicals made by their new solar process.

"The goals are to replace today's fossil fuel economy with a renewable chemical economy," says Licht. "It works fine in the lab but scale-up is the challenge."

He points out that, although the process is entirely new, the individual components -solar towers, 24/7 operation storing solar energy with molten salts - are already in place.

The bottom line of these research results is that solar energy can be used to efficiently make products without carbon dioxide, and at solar energy efficiencies higher than in photovoltaics.

By Michael Berger. Copyright © Nanowerk

http://www.nanowerk.com/spotlight/spotid=24883.php

Zero Carbon Cement Production with Solar Thermal

APRIL 10, 2012 BY SUSAN KRAEMER

In a study published in a recent issue of <u>Chemical Communications</u>, a team of researchers from Virginia's George Washington University explain a revolutionary way to make lime cement that releases zero CO_2 emissions – and costs less too.

The researchers' rough analysis shows that the total cost of the limestone material, solar heat and electricity is \$173 per ton of lime and 0.786 tons of carbon monoxide (0.786 tons of carbon monoxide are produced for every ton of lime).

The market value of carbon monoxide is \$600 per ton, or \$471 per 0.786 tons. So after selling the carbon monoxide, the cost of the lime production is actually a negative number. 173 - 471 = 120 per ton.

No carbon emissions. Cheap. And even better, it has wide applications.

Nearly all of the other heaviest emitters could similarly be stripped of their greenhouse gas problem with this technology, the scientists say.

(Among other industries, these industrial processes include purifying iron and aluminum, making glass, paper, sugar, and agriculture, cleaning smoke stacks, softening water, and removing phosphates from sewage.)

The next step would be is simply scaling up the fairly straightforward process for commercialization. "Although the process itself is entirely new" coauthor Stuart Licht, a chemistry professor at George Washington University, told <u>Phys.org</u>."the individual components (solar towers, 24/7 operation storing solar energy with molten salts) are already in place. Solar energy can be used to efficiently make products without carbon dioxide, and at solar energy efficiencies higher than in photovoltaics."

The timing is perfect: a burgeoning Asia is about to build the new mega cities of the 21st century. And super hot solar thermal heat is ready: <u>Halotechnics Molten Glass Thermal Storage Could Mean 6 Cent</u> <u>Solar</u>.

In the electrolysis process alone, even without solar power, but using fossil heat source, "worst case scenario" says Licht, "the products are lime, graphite and oxygen; there is still no CO₂ product, but CO₂ would be used in the energy to drive the process."

Stuart Licht, et al. "STEP Cement: Solar Thermal Electrochemical Production of CaO without CO2 emission." *Chem. Commun.*, DOI: <u>10.1039/C2CC31341C</u>

The researchers' rough analysis shows that the total cost of the limestone material, solar heat and electricity is \$173 per ton of lime and 0.786 tons of carbon monoxide (0.786 tons of carbon monoxide are produced for every ton of lime).

The market value of carbon monoxide is \$600 per ton, or \$471 per 0.786 tons. So after selling the carbon monoxide, the cost of the lime production is actually a negative number. \$173 - \$471 = minus \$298 per ton.

No carbon emissions. Cheap. And even better, it has wide applications.

Nearly all of the other heaviest emitters could similarly be stripped of their greenhouse gas problem with this technology, the scientists say.

(Among other industries, these industrial processes include purifying iron and aluminum, making glass, paper, sugar, and agriculture, cleaning smoke stacks, softening water, and removing phosphates from sewage.)

The next step would be is simply scaling up the fairly straightforward process for commercialization. "Although the process itself is entirely new" coauthor Stuart Licht, a chemistry professor at George Washington University, told <u>Phys.org</u>."the individual components (solar towers, 24/7 operation storing solar energy with molten salts) are already in place. Solar energy can be used to efficiently make products without carbon dioxide, and at solar energy efficiencies higher than in photovoltaics."

The timing is perfect: a burgeoning Asia is about to build the new mega cities of the 21st century. And super hot solar thermal heat is ready: <u>Halotechnics Molten Glass Thermal Storage Could Mean 6 Cent</u> <u>Solar</u>.

In the electrolysis process alone, even without solar power, but using fossil heat source, "worst case scenario" says Licht, "the products are lime, graphite and oxygen; there is still no CO₂ product, but CO₂ would be used in the energy to drive the process."

Stuart Licht, et al. "STEP Cement: Solar Thermal Electrochemical Production of CaO without CO2 emission." *Chem. Commun.*, DOI: <u>10.1039/C2CC31341C</u>

http://cleantechnica.com/2012/04/10/zero-carbon-cement-production-with-solar-thermal/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+IM-cleantechnica+%28CleanTechnica%29

http://www.mat-china.com/en/docs/IndustryNews/details.aspx?documentid=507

electrolysis, producing a different chemical reaction with no carbon dioxide byproduct. Image credit: Licht, et al. ?2012 The Roval Society of Chemistry

(Phys.org) – While the largest contributor to anthropogenic greenhouse gas emissions is the power industry, the second largest is the more often overlooked cement industry, which accounts for 5-6% of all anthropogenic CO₂ emissions. For every 10 kg of cement produced, the cement industry releases a full 9 kg of CO₂. Since the world consumes about 3 trillion kg of cement annually, this sector has one of the highest potentials for CO₂ emission reductions. But while processes are being explored to sequester the CO₂ from cement production, so far no process can completely eliminate it.

Jumping on this opportunity for improvement, a team of researchers from George Washington University in Ashburn, Virginia, has developed a method for cement production that releases zero CO2 emissions. In addition, the scientists estimate that the new production process will be cheaper than the existing process used in the cement industry. In their study published in a recent issue of Chemical Communications, the scientists describe the process as the Solar Thermal Electrochemical Production of cement, or STEP cement. (The team previously used a similar STEP process for carbon capture, with the potential for decreasing CO2 levels in the atmosphere to pre-industrial levels.) As the scientists explain, 60-70% of CO2 emissions during cement production occurs during the conversion of limestone into lime. This conversion involves decarbonation, or removing the carbon atom and two oxygen atoms in limestone (CaCO3) to obtain lime (CaO) with CO2 as the byproduct. The remainder of the emissions comes from burning fossil fuels, such as coal, to heat the kiln reactors that produce the heat required for this decarbonation process.

The STEP process addresses both issues, starting by replacing the fossil fuel heat source with solar thermal energy. The solar heat is not only applied directly to melt the limestone, it also provides heat to assist in the electrolysis of the limestone. In electrolysis, a current applied to the limestone changes the chemical reaction so that instead of separating into lime and CO2, the limestone separates into lime and some other combination of carbon and oxygen atoms, depending on the temperature of the reaction. When electrolyzed below 800°C, the molten limestone forms lime, C, and O2. When electrolyzed above 800°C, the product is lime, CO, and ?O2.

MATERIALS CHINA ISSN: 1674-3962 CN: 61-1473/TG

initial publication in 1982 Monthly A publication Chinese Materials Research society

"Electrolysis changes the product of the reaction of the limestone as it is converted to lime." coauthor Stuart Licht, a chemistry professor at George Washington University, told Phys.org. "Rather than producing carbon dioxide, it reduces the carbon dioxide (adds electrons) and produces only oxygen and graphite (which can be readily stored as solid carbon) or CO for fuels, plastics or pharmaceuticals. This is accomplished at low energy and high throughput." When separated, the carbon and oxygen atoms no longer pose the threat to the atmosphere that they do as CO2. As Licht explained, the carbon monoxide byproduct in the higher temperature reaction can be used in other industries, such as to produce fuels, purify nickel, and form plastics and other hydrocarbons. Plus, the carbon monoxide is produced significantly below market value by this solar thermal electrolytic process. The main product, lime, doesn't react with the other byproducts, but instead forms a slurry at the bottom of the vessel where it can easily be removed. "This study presents a low-energy, entirely new synthetic route to form CaO without any carbon dioxide emission, and is based on unexpected solubility behavior in molten salts," Licht said. "This synthesis can be accomplished without solar energy, and without our new STEP process, but is particularly attractive when combined with this new solar process. Alternatively, the new synthesis could be used by industry to produce cement using any non-solar renewable or nuclear energy without any CO2 release, or greatly decrease CO2 if fossil fuels were used to drive the new cement production (in the latter, worst-case scenario, the products are lime, graphite and oxygen; there is still no CO2 product, but CO2 would be used in the energy to drive the process)."

According to the researchers, the STEP process can be performed at a lower projected cost than the existing cement industry process. In fact, when accounting for the value of the carbon monoxide byproduct, the cost of the lime production is actually negative. The researchers' rough analysis shows that the total cost of the limestone material, solar heat, and electricity is \$173 per ton of lime and 0.786 tons of carbon monoxide (0.786 tons of carbon monoxide are produced for every ton of lime). The market value of carbon monoxide is \$600 per ton, or \$471 per 0.786 tons. So after selling the carbon monoxide, the cost of the lime production is \$173 - \$471 = -\$298 per ton. For comparison, the cost to produce lime in the conventional way is about \$70 per ton. The researchers emphasize that this analysis is not comprehensive, but it indicates the cost benefit of STEP cement, not even considering the value of eliminating CO2 emissions.

The scientists add that the STEP process could be extended beyond cement production to other applications tha: convert limestone to lime, such as purifying iron and aluminum; producing glass, paper, sugar, and agriculture; cleaning smoke stacks; softening water; and removing phosphates from sewage.

The next challenge for the researchers lies in scaling up the process for commercialization. They note that Gemasolar, a large-scale solar thermal plant, is already in operation. Other solar thermal plants are following, with electricity costs expected to decrease. To maintain constant operation, molten salt storage of the thermal energy can allow production to continue even during fluctuations in sunlight and at night. Another issue may be finding enough lithium carbonate for the electrolyte, although the metal is not consumed in the STEP process and so is not a recurring cost. "We plan to scale up the outdoor STEP cement prototype, and in general want to increase the portfolio of useful chemicals made by our new solar process," Licht said. "The goals are to replace today's fossil fuel economy with a renewable chemical economy. Scale-up is the challenge. Although the process is entirely new, the individual components (solar towers, 24/7 operation storing solar energy with molten salts) are already in place. Solar energy can be used to efficiently make products without carbon dioxide, and at solar energy efficiencies higher than in photovoltaics."

More information: Stuart Licht, et al. "STEP Cement: Solar Thermal Electrochemical Production of CaO without CO2 emission." Chem. Commun., DOI: 10.1039/C2CCC31341C

http://phys.org/news/2012-04-solar-thermal-cement-carbon-dioxide.html

APR.16.2012

http://energy.korea.com/archives/26833

Solar-powered cement production without carbon dioxide emissions

The global cement industry is currently one of the largest single emitter of carbon dioxide, generating on average about 830 kg of this greenhouse gas for each 1000 kg of cement produced (source: International Energy Agency 2007, Tracking Industrial Energy Efficiency and CO2 Emissions; pdf). Considering that the worldwide annual production of cement is a whopping 3.8 trillion kg (source), the cement industry alone accounts for approximately 5-6% of man-made CO2 emissions.

In a previous Nanowerk Spotlight ("New solar-powered process removes CO2 from the air and stores it as solid carbon") we introduced a novel solar conversion process, combining electronic and chemical pathways, for carbon dioxide capture. This STEP (Solar Thermal Electrochemical Production) process proactively converts anthropogenic carbon dioxide generated in burning fossil fuels, as well as eliminates carbon dioxide emissions associated with the generation of metals and bleach. In a subsequent Spotlight ("Reinventing iron production using clean renewable energy instead of coal") we showed how the STEP process could be used as an effective new carbon-dioxide-free process for iron production.

Conventional thermal decomposition production of lime (left) versus STEP direct solar conversion of calcium carbonate

to calcium oxide (right) eliminating CO2. (Photo source: Dr. Licht, University of Washington)

The research team, led by Stuart Licht, a professor of chemistry at George Washington University, has now presented a solar-powered process to produce cement without any carbon dioxide. In a paper (accepted manuscript) in the April 5, 2012 online edition of Chemical Communications ("STEP Cement: Solar Thermal Electrochemical Production of CaO without CO2 emission"), they show that STEP-produced cement operates at solar energy conversion efficiencies higher than that in any solar photovoltaic.

"In cement production, the majority of CO2 emissions occurs during the decarbonation of limestone (CaCO3) to lime (CaO) and the remainder (30 to 40%) from burning fossil fuels, such as coal, to heat the kiln reactors to ~900°C," Licht explains to Nanowerk. " Our study presents a low-energy, entirely new synthetic route to form CaO without any carbon dioxide emission, and is based on unexpected solubility behavior in molten salts. This synthesis can be accomplished without solar energy, and without our new STEP process, but is particularly attractive when combined with this new solar process."

"Alternatively" he adds, "the new synthesis could be used by industry to produce cement using any non-solar, renewable or nuclear energy without any CO2 release, or greatly decrease CO2 if fossil fuels were used to drive the new cement production – in the latter, worst case scenario, the products are lime, graphite and oxygen; there is still no CO2 product, but CO2 would be used in the energy to drive the process."

In STEP cement limestone undergoes low energy electrolysis to produce lime, O2 and reduced carbonate without carbon dioxide emission.

"There have been proposals to form cement which recaptures or sequesters some of the CO2 emitted during its production process" says Licht. "This, however, is the first process which forms no CO2 while producing cement."

In this new technique, the kiln limestone-to-lime process is replaced by an electrolysis process which changes the product of the reaction of the limestone as it is converted to lime. Rather than producing carbon dioxide, it reduces the carbon dioxide (adds electrons) and produces only oxygen and graphite (which can be readily stored as solid carbon) or CO for fuels, plastics or pharmaceuticals. This is accomplished at low energy and high throughput.

The researchers plan to scale up the outdoor STEP cement prototype and in general want to increase the portfolio of useful chemicals made by their new solar process.

"The goals are to replace today's fossil fuel economy with a renewable chemical economy," says Licht. "It works fine in the lab but scale-up is the challenge."

He points out that, although the process is entirely new, the individual components -solar towers, 24/7 operation storing solar energy with molten salts - are already in place.

The bottom line of these research results is that solar energy can be used to efficiently make products without carbon dioxide, and at solar energy efficiencies higher than in photovoltaics.

architects newsdesk

Solar Thermal STEP Method Could Make Cement Production Greenhouse Gas-Free Tue, 10/04/2012 - 17:46

The <u>cement manufacturing</u> process has a staggering carbon footprint – said to be responsible for up to <u>7 percent</u> of global greenhouse gas emissions, the industry releases around 9 lbs of carbon dioxide for every 10 lbs of cement produced. With global production standing at around three billion tonnes each year, there remains a huge need to find a <u>greener method</u> of production. While there have been various <u>efforts</u> in recent years, researchers at George Washington University have devised the first technique, called Solar Thermal Electrochemical Production (<u>STEP</u>), to completely eliminate CO2 emissions from the process, and it would even be cheaper than current methods of production. <u>http://pedro.co.za/node/4772</u>

Step up for green iron production 09 September 2010

A more environmentally friendly way of producing iron developed by scientists in the US and China could reduce industrial carbon dioxide emissions by a guarter worldwide.

Since the beginning of the industrial revolution, iron metal has been produced by melting iron ore at temperatures over 2000°C in a blast furnace. This produces large amounts of CO₂, which is released into the atmosphere and

contributes to climate change.

The new method developed by Stuart Licht at George Washington University in Washington, DC and Baohui Wang at Northeast Petroleum University in Daqing could result in completely CO₂-free iron production. The team show

that iron ores (Fe₂O₃ and Fe₃O₄) can be dissolved in molten lithium carbonate

at temperatures of around 800°C - a process that was previously thought impossible. Adding an electrical current to the molten mix separates the iron ore into its component parts, iron and oxygen, which can be collected by two electrodes in the solution.

Global carbon dioxide emissions could be cut by a quarter

Highlights in Chemical Technology

Chemical technology news from across RSC Publishing.

Less energy is required to generate the lower temperatures and power the electrolysis, but Licht also demonstrates that these can be achieved using renewable energy. The team employ their recently developed solar technique, called solar thermal electrochemical photo (Step) - which uses the Sun's thermal energy to melt the lithium carbonate solution while the visible light energy powers the electrolysis. Using the Step process no CO₂ is

produced.

'Step production of iron would be cost effective, and could allow iron production facilities to be housed in new geographic locations, such as in closer to urban centres or in high sunlight geographies,' says Licht, as well as eliminating one of the major contributors to global carbon dioxide emission.

Neal Woodbury, a renewable energy expert at Arizona State University, US, comments 'if the Step process can be performed at industrial scale, it holds considerable promise. Of particular note is that it should be possible to utilise waste heat from the processes that produce the required electricity, thus decreasing the energy input as well.'

Licht has previously shown that the Step technology can be used for carbon capture and for generating hydrogen fuel. And says he sees the scale-up of CO₂-free iron production from the laborartory to industry as an exciting

challenge.

Emma Shiells

http://www.rsc.org/Publishing/ChemTech/Volume/2010/10/step_up_for_green_iron.asp

April 10, 2012 by Lisa Zyga

In the conventional production of lime from limestone, fossil fuels are burned during the decarbonation process, resulting in a carbon dioxide byproduct. In the STEP process, solar thermal energy is used to heat the limestone as well as assist in electrolysis, producing a different chemical reaction with no carbon dioxide byproduct. Image credit: Licht, et al. ©2012 The Royal Society of Chemistry

(Phys.org) -- While the largest contributor to anthropogenic greenhouse gas emissions is the power industry, the second largest is the more often overlooked cement industry, which accounts for 5-6% of all anthropogenic CO_2 emissions. For every 10 kg of cement produced, the cement industry releases a full 9 kg of CO_2 . Since the world consumes about 3 trillion kg of cement annually, this sector has one of the highest potentials for CO_2 emission reductions. But while processes are being explored to sequester the CO_2 from cement production, so far no process can completely eliminate it.

Jumping on this opportunity for improvement, a team of researchers from George Washington University in Ashburn, Virginia, has developed a method for <u>cement production</u> that releases zero CO₂ emissions. In addition, the scientists estimate that the new production process will be cheaper than the existing process used in the <u>cement</u> industry.

In their study published in a recent issue of <u>Chemical Communications</u>, the scientists describe the process as the Solar Thermal Electrochemical Production of cement, or STEP cement. (The team previously used a <u>similar STEP process for carbon capture</u>, with the potential for decreasing CO₂ levels in the atmosphere to pre-industrial levels.)

As the scientists explain, 60-70% of CO₂ emissions during cement production occurs during the conversion of <u>limestone</u> into lime. This conversion involves decarbonation, or removing the carbon atom and two oxygen atoms in limestone (CaCO₃) to obtain lime (CaO) with CO₂ as the <u>byproduct</u>. The remainder of the emissions comes from <u>burning fossil fuels</u>, such as coal, to heat the kiln reactors that produce the heat required for this decarbonation process.

The STEP process addresses both issues, starting by replacing the fossil fuel <u>heat source</u> with solar thermal energy. The solar heat is not only applied directly to melt the limestone, it also provides heat to assist in the electrolysis of the limestone. In electrolysis, a current applied to the limestone changes the chemical reaction so that instead of separating into lime and CO₂, the limestone separates into lime and some other combination of carbon and oxygen atoms, depending on the temperature of the reaction. When electrolyzed below 800°C, the molten limestone forms lime, C, and O₂. When electrolyzed above 800°C, the product is lime, CO, and $\frac{1}{2}O_2$.

"Electrolysis changes the product of the reaction of the limestone as it is converted to lime," coauthor Stuart Licht, a chemistry professor at George Washington University, told *Phys.org.* "Rather than producing carbon dioxide, it reduces the carbon dioxide (adds electrons) and produces only oxygen and graphite (which can be readily stored as solid carbon) or CO for fuels, plastics or pharmaceuticals. This is accomplished at low energy and high throughput."

http://phys.org/news/2012-04-solar-thermal-cement-carbon-dioxide.html

When separated, the carbon and <u>oxygen atoms</u> no longer pose the threat to the atmosphere that they do as CO_2 . As Licht explained, the carbon monoxide byproduct in the higher temperature reaction can be used in other industries, such as to produce fuels, purify nickel, and form plastics and other hydrocarbons. Plus, the carbon monoxide is produced significantly below market value by this solar thermal electrolytic process. The main product, lime, doesn't react with the other byproducts, but instead forms a slurry at the bottom of the vessel where it can easily be removed.

"This study presents a low-energy, entirely new synthetic route to form CaO without any carbon dioxide emission, and is based on unexpected solubility behavior in molten salts," Licht said. "This synthesis can be accomplished without solar energy, and without our new STEP process, but is particularly attractive when combined with this new solar process. Alternatively, the new synthesis could be used by industry to produce cement using any non-solar renewable or nuclear energy without any CO₂ release, or greatly decrease CO₂ if <u>fossil fuels</u> were used to drive the new cement production (in the latter, worst-case scenario, the products are lime, graphite and oxygen; there is still no CO₂ product, but CO₂ would be used in the energy to drive the process)."

According to the researchers, the STEP process can be performed at a lower projected cost than the existing <u>cement industry</u> process. In fact, when accounting for the value of the carbon monoxide byproduct, the cost of the lime production is actually negative. The researchers' rough analysis shows that the total cost of the limestone material, <u>solar heat</u>, and electricity is \$173 per ton of lime and 0.786 tons of carbon monoxide (0.786 tons of carbon monoxide is \$600 per ton, or \$471 per 0.786 tons. So after selling the <u>carbon monoxide</u>, the cost of the lime production is \$173 - \$471 = -\$298 per ton. For comparison, the cost to produce lime in the conventional way is about \$70 per ton. The researchers emphasize that this analysis is not comprehensive, but it indicates the cost benefit of STEP cement, not even considering the value of eliminating CO₂ emissions.

The scientists add that the STEP process could be extended beyond cement production to other applications that convert limestone to lime, such as purifying iron and aluminum; producing glass, paper, sugar, and agriculture; cleaning smoke stacks; softening water; and removing phosphates from sewage.

The next challenge for the researchers lies in scaling up the process for commercialization. They note that Gemasolar, a large-scale solar thermal plant, is already in operation. Other solar thermal plants are following, with electricity costs expected to decrease. To maintain constant operation, molten salt storage of the thermal energy can allow production to continue even during fluctuations in sunlight and at night. Another issue may be finding enough lithium carbonate for the electrolyte, although the metal is not consumed in the STEP process and so is not a recurring cost.

"We plan to scale up the outdoor STEP cement prototype, and in general want to increase the portfolio of useful chemicals made by our new solar process," Licht said. "The goals are to replace today's fossil fuel economy with a renewable chemical economy. Scale-up is the challenge. Although the process is entirely new, the individual components (solar towers, 24/7 operation storing solar energy with molten salts) are already in place. Solar energy can be used to efficiently make products without carbon dioxide, and at solar energy efficiencies higher than in photovoltaics."

More information: Stuart Licht, et al. "STEP Cement: Solar Thermal Electrochemical Production of CaO without CO2 emission." *Chem. Commun.*. DOI: 10.1039/C2CC31341C

DAILY COMMERCIAL NEWS

June 5, 2012

http://www.dononl.com/article/id49775/--a-sprinkle-of-solar-power-in-cement-recipe

Column | Korky Koroluk A sprinkle of solar power in cement recipe

A team of scientists at George Washington University, in the United States, has developed a way to use solar energy to produce cement without emitting any carbon dioxide.

It's good news for the construction industry, which has been concerned about carbon dioxide emissions for years.

The present process for manufacturing cement has an immense carbon footprint, around five or six per cent of global greenhouse gas emissions. For every tonne of cement produced, 900 kilograms of carbon dioxide is released into the atmosphere. And the world uses about three billion tonnes of cement every year, releasing 2.7 billion tonnes of carbon dioxide.

Carbon dioxide is produced in two stages of cement production: the process of decarbonation, in which limestone is separated into lime and carbon dioxide; and burning fossil fuels to heat the limestone to start the decarbonation process.

Construction Corner Korky Koroluk

The new process, dubbed STEP for Solar Thermal Electrochemical Production, eliminates the need for fossil fuel.

Instead, concentrated sunlight is used to melt salts in a large storage tank. The hot molten salt is then used not only to melt the limestone, but also to provide heat to assist in the electrolysis of the limestone.

In electrolysis a current is applied to the limestone, changing the chemical reaction so that instead of separating into lime and carbon dioxide, the limestone separates into lime and other combinations of carbon and oxygen atoms, depending on the temperature of the reaction. By controlling the temperature, the gas byproduct can be carbon monoxide, which is used in some fuels, plastics and pharmaceuticals. Selling it could be profitable enough to more than offset the cost of cement manufacture. The upshot would be cheaper cement with no greenhouse gases.

Stuart Licht, research team leader, says that use of the STEP process could be extended beyond cement production. The team has published a paper showing that a variation of the STEP process can produce pure iron from two common ores—hematite and magnetite, without emitting carbon dioxide. That's important because the iron industry sends 6.8 trillion tonnes of carbon dioxide into the air from its blast furnaces every year.

STEP could also be used for producing glass, paper and sugar, for softening water, and for removing phosphates from sewage.

The next task facing Licht and his team is scaling up the process for commercialization. That shouldn't be too hard because the solar thermal technology is already proven and in use in Spain and parts of the U.S., with more such plants under construction or planned elsewhere.

Ultimately, though, this is about far more than producing cement, or iron, or glass. It's about capturing and sequestering carbon dioxide in the form of solid carbon.

Part of Licht's research is aimed at increasing the "portfolio of useful chemicals made by our new solar process." And that's important because the long-range goal is "to replace today's fossil fuel economy with a renewable chemical economy." To this end, Licht says his team is exploring the STEP generation of synthetic jet fuel and synthetic diesel. That would be done by using carbon monoxide from the STEP process and hydrogen obtained by using STEP to hydrolyze water.

Ellen Stechel, manager of concentrated solar technologies at Sandia National Laboratories in the U.S., says using the sun for manufacturing and for fuel production is an "interesting approach," which she believes can possible. And because of the simplicity of the electrolysis cells Licht uses, she believes the process can be cost-competitive.

That might sound like pie in the sky, but it's an idea the Licht has developed, step by careful step, for a number of years, publishing papers as his work progressed.

And STEP's possibilities are so immense, that scientists worldwide are watching closely.

Solar cement — Solar-driven electrolysis for making lime and no CO2 emission Edited By Elleen De Guire • April 12, 2012

Conventional thermal decomposition of calcium carbonate for cement-making generates almost as much CO₂ as lime. Solar-driven electrolysis of calcium carbonate yields calcium oxide and carbon (or carbon monoxide) and oxygen. Credit: Licht; George Washington University.

Energy gurus often talk about reducing CO₂ emissions. Why not be more aggressive and talk about eliminating CO₂ emissions? And, why not start with a heavy CO₂-producing industry, such as cement?

Some estimate that cement production generates five to six percent of all anthropogenic (human-generated) CO_2 emission. There is an almost one-to-one correspondence of CO_2 generated to cement made — 10 kg of cement generates 9 kg of CO_2 . The global annual consumption of cement is more than 3 x 10¹² kg, and 90 percent of that is a lot of CO_2 . That translates to about 3,300 million tons of cement and just under 3,000 million tons of CO_2 .

Indeed, cement researchers often ponder how to to significantly reduce the emissions problem, and many strides have been made in partnership with large cement makers.

The cement-making process generates CO₂ from the decomposition reaction of calcium carbonate to calcium oxide (lime) and from the combustion of fossil fuels to fire kiln reactors (to about 900°C). Ninety percent or so of the total energy needed to make concrete is used just to make the cement.

Decomposition is a brute force approach to making lime — heat the stuff until it gives up its bonds and falls apart. Professor Stuart Licht at George Washington University is a STEP ahead, though, and has demonstrated the feasibility of making lime by electrolysis with a process he calls Solar Thermal Electrochemical Production. In a paper published this month in *Chemical Communications*, (DOI: 10.1039/C2CC31341C), he describes a solar-driven process that exploits "a new thermal chemistry, based on anomalies in oxide solubilities, to generate CaO, without CO₂ emission."

In the process, molten carbonates heated by solar energy are electrolyzed and form oxides, which in the presence of calcium carbonate precipitate as lime. The solubility of calcium carbonate is high in molten carbonates at high temperatures (in the 750-950°C range). However, the solubility of calcium oxide in molten carbonates is low, up to 100 times lower than calcium carbonate.

The team experimented with two kinds of electrolyte, a eutectic mix of carbonates and pure lithium carbonate. The paper explains how lime forms in the electrolytic cell, "when molten carbonates undergo electrolysis to form oxides, added calcium carbonate will precipitate the desired CaO product for extraction, and the added carbonate replenishes the electrolyte for continued, ongoing CaO production."

At temperatures below 800°C, the calcium carbonate electrolyzes to CaO, C and O₂. Above 800°C, the reaction products are CaO, CO and O₂. (CO is a commercially valuable compound.) No CO₂ is produced in either temperature regime.

Electrolysis of carbonates is endothermic, which means much of the thermal energy required to drive the process can be provided by solar energy. And, if all of the heat is provided by solar energy, no fossil fuels are burned and no CO₂ is generated by the process itself.

The resulting calcium oxide is high density and appears to be easy to harvest as it "forms a slurry at the bottom of the vessel where it may be removed by tap in the same manner in which molten iron is removed from conventional iron production kilns."

The authors realize that scaling-up to industrial production levels and incorporation into production systems will be challenging. But, this is familiar territory for industries and engineers. There is precedent, too, for industrial-scale electrolysis processes. Electrolysis is the basis of the Hall-Heroult process (pdf) for extracting aluminum from bauxite. Similar to Licht's experiment, the key step is to dissolve alumina in a molten salt, in this case, sodium aluminum fluoride.

Home > All Engineering News > Is it possible to produce cement without releasing high levels of carbon?

Is It Possible To Produce Cement Without Releasing High Levels Of Carbon?

News & Events - Engineering News

A novel way of making cement could help drastically reduce the greenhouse gas emissions generated during the process, MIT's Technology Review reports.

Producing lime, the most important ingredient in cement mixtures, releases a significant amount of greenhouse gases into the atmosphere every year. Companies that specialize in crafting cement have long struggled to devise more efficient ways of generating lime, but their efforts have often stalled.

Researchers at George Washington University recently unveiled a proof of concept that would allow for the production of lime without many of the deleterious environmental consequences that result from conventional strategies. If the model proves viable, it could help revolutionize the cement industry, experts contend.

Cement production accounts for approximately six percent of all greenhouse gas emissions annually. Generating lime is by far the most carbon-intensive part of the process, according to the news provider. Such is true because of a number of factors, including the fact that firms routinely employ fossil fuels to heat limestone to exceedingly hot temperatures, often in excess of 1,500 degrees Celsius.

Replacing fossil fuels with renewable energy sources is complex, however, and would not necessarily address another intrinsic obstacle: to generate lime from limestone, which is calcium carbonate, it must be heated until carbon dioxide is released. Scientists at GW concentrated their engineering research on tweaking the traditional technique.

Instead of simply implementing solar cells to help power the reactions, the researchers developed a system that converts the resultant carbon dioxide into oxygen and either carbon or carbon monoxide. To achieve such an outcome, they engineered a scheme that employs both electrolysis and heat. What's more, they used a mixture of calcium carbonate and liquid lithium carbonate to increase its effectiveness.

The compound is molten around 900 degrees Celsius, a property that cut the amount of electricity needed in electrolysis, which in turn helps separate lime, according to the scientists. Aside from helping cut carbon emissions, the process also costs less than conventional methods, the researchers noted. PhysOrg reports that by introducing electrolysis into the process, scientists were ultimately able to change the reaction's byproducts.

"Electrolysis changes the product of the reaction of the limestone as it is converted to lime," Stuart Licht, a chemistry professor at GW, said in an interview with Phys Org. "Rather than producing carbon dioxide, it reduces the carbon dioxide [adds electrons] and produces only oxygen and graphite [which can be readily stored as solid carbon] or CO for fuels, plastics or pharmaceuticals. This is accomplished at low energy and high throughput."

Additionally, they contended that it could help significantly reduce projected greenhouse gas levels over the next few decades, especially as developing nations ratchet up their cement production as they undertake massive infrastructure projects.

"Although the process itself is entirely new, the individual components are already in place," said Licht. "Solar energy can be used to efficiently make products without carbon dioxide, and at solar energy efficiencies higher than in photovoltaics."

The researchers recently published their findings in Chemical Communications.

Green Car Congress

Energy, Technologies, Issues and Policies for Sustainable Mobility

5 June 2012

GWU team develops cost-effective solar process to produce lime for cement without CO₂ emission

http://www.greencarcongress.com/2012/04/licht-20120411.html

11 April 2012

Conventional thermal decomposition production of lime (left) versus STEP direct solar conversion of calcium carbonate t calcium oxide (right). Click to entarme

A team at George Washington University has demonstrated a new solar process that can produce lime (CaO) for cement without any emission of carbon dioxide, and at lower projected cost than the existing cement industry process. Production of cement accounts for 5-6% of all anthropogenic CO₂ emissions, generating 9 kg of the greenhouse gas for each 10 kg of cement produced, notes

Dr. Stuart Licht and his colleagues in a paper on their process accepted for publication in the RSC journal

Chemical Communications. The majority (about 60%) of those CO_2 emissions result from the production of lime.

The Solar Thermal Electrochemical Production of CaO without CO₂ (STEP Cement) process is based on the STEP theory of an efficient solar chemical process, based on a synergy of solar thermal and endothermic electrolyses, introduced by Licht and his colleagues in 2009. (Earlier post, earlier post.)

The majority of CO_2 emissions occurs during the decarbonation of limestone (CaCO₃) to lime (CaO)...and the remainder (30 to 40%) from burning fossil fuels, such as coal, to heat the kiln reactors to ~900°C.

... Here we show a new thermal chemistry, based on anomalies in oxide solubilites, to generate CaO, without CO2 emission, in a high throughput, cost effective, environment conducive to the formation of cement. The aqueous solubility of CaCO₃ (6x10⁻⁵ m, where molal \equiv

moles per kg solvent) is 3 orders of magnitude less than the $2x10^{-2}$ m solubility of calcium oxide, dissolving as calcium hydroxide. Surprisingly, this situation is reversed at high temperatures in molten carbonates, which allows the endothermic, electrolytic one pot synthesis, and precipitation of CaO. Conducive to our new solar process, electrolysis of molten carbonates forms oxides, which precipitate as calcium oxide when mixed with calcium carbonate. Thus no CO₂ is formed, to eliminate cement's greenhouse gas contribution to anthropogenic climate change.

-Licht et al.

STEP Cement uses solar thermal energy to drive calcium oxide production without any emission of CO_2 in a one pot synthesis; solar thermal energy is used both for the enthalpy of calcium oxide formation from calcium carbonate and to decrease the required electrolysis potential.

In the process, limestone undergoes low energy electrolysis to produce (i) CaO; (ii) O_2 and (iii) reduced carbonate without carbon dioxide emission.

Molten carbonate electrolytic synthesis operates in the reverse mode of molten carbonate fuel cells (MCFC); rather than injecting fuel to produce electricity as a product as in the MCFC, electrical energy is supplied and energetic chemical products are generated. Carbonate electrolysis is endothermic, which provides the opportunity to add a significant portion of the required energy to drive the process as solar thermal heat. When the requisite low energy of the solar-heated electrolysis is generated by a non-fossil fuel electricity source, the process is fully carbon dioxide free.

In their STEP electrolysis experiments, Licht *et al.* used three electrolyses in series, with lithium carbonate using thin planar nickel and steel electrodes, as detailed in the Electronic Supplementary Material (ESI) for the paper.

The STEP Cement process, the authors note, also cogenerates a more valuable product than cement: either CO or carbon. The CO is produced at below current market values; the low cost of the cogenerated product is due to the endothermic, reactive nature of the available hot carbonate from the limestone, which as they demonstrated in the study, is easily reduced at high activity/low energy in the molten state to carbon or carbon monoxide. CO is an energetic industrial reagent used to produce fuels, purify nickel, and to form plastics and other hydrocarbons.

As a result, the authors suggest, STEP Cement can produce lime at less cost than that of conventional industry cement processes; the projected cost of the produced calcium oxide is decreased by the value of the byproduct, either solid carbon or CO.

This study presents a new chemistry of energy efficient, CO₂-free lime production, and the challenge of system engineering and scale-up awaits. It should be noted that the carbonate product is readily removed (dropping cleanly from the extracted steel wire cathode when it is uncoiled, or at higher temperature as a simple evolved gas (CO)), oxygen evolution is confined to the vicinity of the anode, and the high density calcium oxide product is not reactive (does not decompose) in the molten carbonate and forms a slurry at the bottom of the vessel where it may be removed by tap in the same manner in which molten iron is removed from conventional iron production kilns.

-Licht et al.

Resources

 Stuart Licht, Hongjun Wu, Chaminda Hettige, Baohui Wang, Joseph Asercion, Jason Lau and Jessica Stuart (2012) STEP Cement: Solar Thermal Electrochemical Production of CaO without CO₂ emission. *Chem. Commun.*, 2012, Accepted Manuscript doi: <u>10.1039/C2CC31341C</u>

Electronic Supplementary Material

Linguaggio Macchina

09 aprile 2012

Come produrre cemento "Carbon Free" grazie al Sole. Una ricerca della George Washington University di Ashburn (Virginia)

Attualmente per ogni 10 kg di cemento prodotto vengono rilasciati 9 kg di anidride carbonica. In un articolo pubblicato il 5 aprile 2012 su rivista Chemical Communication, Stuart Licht e altri sei ricercatori della George Washington University di Ashburn (Virginia, USA) illustrano il loro metodo di

produzione di cemento da fonte solare.

STEP Cement: Solar Thermal Electrochemical Production of CaO without CO2 emission

Stuart Licht, Hongjun Wu, Chaminda Hettige, Baohui Wang, Joseph Asercion, Jason Lau, Jessica Stuart

Abstract

New molten salt chemistry allows solar thermal energy to drive calcium oxide production without any carbon dioxide emission. This is accomplished in a one pot synthesis, and at lower projected cost than the existing cement industry process, which after power production, is the largest contributor to anthropogenic greenhouse gas emissions.

The Licht research group has taken on the challenge of a comprehensive solution to climate change. We're working towards changing today's fossil fuel, to a renewable chemical economy, replacing the largest greenhouse gas emitters, including iron & fuel production, by new, inexpensive, solar, CO2-free, chemistries.

New Cement-Making Method Could Slash Carbon Emissions – Technology Review

May 12, 2012

Researchers at George Washington University have bolted together an ungainly contraption that they say efficiently uses the energy in sunlight to power a novel chemical process to make lime, the key ingredient in cement, without emitting carbon dioxide. the device puts to work about half of the energy in sunlight (solar panels, in comparison, convert just 15 percent of the energy in sunlight into electricity).

Cement production alone emits 5 to 6 percent of total man-made greenhouse gases, and most of that comes from producing lime. Some of the greenhouse-gas emissions from conventional cement production come from using fossil fuels to heat up limestone to high temperatures—about 1,500 °C. Replacing fossil fuels with renewable energy is straightforward, but not necessarily economical. the new work focuses on a harder problem. about 60 percent of the carbon-dioxide emissions from cement production is inherent to the process. Lime is made by heating up limestone—that is, calcium carbonate —until it releases carbon dioxide.

The new process changes the chemistry. Rather than emitting carbon dioxide, it converts the gas, using a combination of heat and electrolysis to produce oxygen and either carbon or carbon monoxide, depending on the temperatures employed. both carbon and carbon monoxide are useful products that might otherwise have been made using fossil fuels.

To make the electrolysis practical, the researchers mixed solid calcium carbonate with liquid lithium carbonate, which is molten at the temperatures that are optimal for the process—about 900 °C. the liquid form is conducive to electrolysis, the elevated temperatures lower the amount of electricity needed to electrolyze, and cause the lime to precipitate out of the mixture, making it easy to collect. (At lower temperatures, the lime is more soluble, so it doesn't precipitate.)

To demonstrate the process, the researchers built a device that includes three Fresnel lenses for concentrating sunlight, two of those heat up the mixture of lithium carbonate and limestone. Those are the largest lenses. Their relative size reflects the fact that most of the energy needed for the process goes to heating up the mixture, the third, smaller lens focuses light on a high-efficiency solar cell, which provides the relatively small amount of electricity needed to electrolyze the hot carbonate mixture.

The device is just a proof of concept, not ready for commercialization. It's small, and it works only when it's sunny—and intermittent operation isn't ideal for an industrial process. the researchers propose using molten salt to store heat, a system used in some solar thermal power plants. that would allow the process to run day and night. the electricity could come from using the heat to generate steam to spin a turbine, as in a solar thermal power plant, or from any other source of electricity.

Stuart Licht, the professor of chemistry at George Washington University who led the work, estimates that the process, if it can be scaled up, could be cheaper than conventional lime production. He says it's more efficient than solar panels because it uses parts of the solar spectrum that solar cells can't efficiently convert into electricity.

The process still requires a lot of energy, says C12 Energy CEO Kurt House, who has developed lowcarbon concrete production processes. "It comes down to how you want to use solar energy," he says. "If the efficiency is as good as they say it is, then I agree, this is very, very interesting, but I'm skeptical." http://sunsolarelectric.com/new-cement-making-method-could-slash-carbon-emissions-technology-review/

Solar Powered Process Could Finally Make Concrete Greener

Concrete is among the most common building materials in the world, and it has a <u>massive carbon footprint</u>. The 15% of concrete that is cement is behind five to six percent of all man made CO₂, producing nine kilograms of carbon dioxide for every ten kilograms of cement. A new solar process may put a big dent in those numbers.

Researchers at The George Washington University have developed a process called Solar Thermal Electrochemical Production (STEP) of CaO without CO2, <u>reported Green Car Congress</u>. As the name implies, it's a way to produce the lime that goes into cement without yielding CO2.

As <u>Lloyd noted</u> a few years ago: "The chemical reaction that creates cement releases large amounts of CO₂ in and of itself. Sixty percent of emissions caused by making cement are from this chemical process alone."

The GWU team, led by Dr. Stuart Licht, goes after that chemical reaction and that 60 percent:

The majority of CO2 emissions occurs during the decarbonation of limestone (CaCO3) to lime (CaO)...and the remainder (30 to 40%) from burning fossil fuels, such as coal, to heat the kiln reactors to ~900°C.

The "new thermal chemistry" relies on "anomalies in oxide solubilites" to cut out the production of CO₂ in the making of cement. It remains to be seen how STEP can be translated to the industrial model, if it will be practical and costeffective. If all goes well, concrete could bump off bamboo as the new green building material du jour.

Cement Production with Concentrated Solar Thermal Power

april 12, 2012

Concentrating Solar Power would be used. And not just to heat the limestone – but also to help in electrolysis. This would produce a different chemical reaction without a carbon dioxide byproduct.

In a study published in a recent issue of Chemical Communications, a team of researchers from Virginia's George Washington University explain a revolutionary way to make lime cement that releases zero CO2 emissions – and costs less too.

After coal-powered electricity, cement manufacture is the next biggest emitter of greenhouse gases, because cement is ubiquitous in modern life.

It is needed for virtually all skyscrapers, bridges and freeway overpasses and many other buildings and structures including nuclear power plants. The world consumes about 3 trillion kg of cement annually.

Pound for pound, kilogram for kilogram, ton for ton, every 10 units of cement will release 9 units of CO2. So it is a huge problem for the increasingly unstable climate we are creating for ourselves.

Of the two ways that making cement releases carbon dioxide, separating the lime from the limestone (decarbonation, or removing the carbon atom and two oxygen atoms in limestone (CaCO3) to obtain lime (CaO) with CO2) accounts for 70% of the emissions.

The other 30% is because it takes a lot of heat to heat the kiln reactors, burning fossil fuels.

Solar thermal power would be used. And not just to heat the limestone – but also to help in electrolysis. This would produce a different chemical reaction without a carbon dioxide byproduct.

In electrolysis, a current applied to the limestone changes the chemical reaction so that instead of separating into lime and CO2, the limestone separates into lime and some other combination of carbon and oxygen atoms, depending on the temperature of the reaction.

When electrolyzed below 800°C, the molten limestone forms lime, C, and O2. When electrolyzed above 800°C, the product is lime, CO, and ½O2.

Instead of a CO2 byproduct, their reactions produce useful industrial chemicals. Their carbon monoxide byproduct (in the higher temperature reaction) can be used to make fuels, purify nickel, and form plastics and other hydrocarbons.

This makes it cheaper than current lime production which costs \$70 a ton, because the CO can be sold.

The researchers' rough analysis shows that the total cost of the limestone material, solar heat and electricity is \$173 per ton of lime and 0.786 tons of carbon monoxide (0.786 tons of carbon monoxide are produced for every ton of lime).

The market value of carbon monoxide is \$600 per ton, or \$471 per 0.786 tons. So after selling the carbon monoxide, the cost of the lime production is actually a negative number. 173 - 471 = 1000 minus \$298 per ton.

No carbon emissions. Cheap. And even better, it has wide applications.

Nearly all of the other heaviest emitters could similarly be stripped of their greenhouse gas problem with this technology, the scientists say.

(Among other industries, these industrial processes include purifying iron and aluminum, making glass, paper, sugar, and agriculture, cleaning smoke stacks, softening water, and removing phosphates from sewage.)

The next step would be is simply scaling up the fairly straightforward process for commercialization. "Although the process itself is entirely new" coauthor Stuart Licht, a chemistry professor at George Washington University, told Phys.org."the individual components (solar towers, 24/7 operation storing solar energy with molten salts) are already in place. Solar energy can be used to efficiently make products without carbon dioxide, and at solar energy efficiencies higher than in photovoltaics."

The timing is perfect: a burgeoning Asia is about to build the new mega cities of the 21st century. And super hot solar thermal heat is ready: Halotechnics Molten Glass Thermal Storage Could Mean 6 Cent Solar.

In the electrolysis process alone, even without solar power, but using fossil heat source, "worst case scenario" says Licht, "the products are lime, graphite and oxygen; there is still no CO2 product, but CO2 would be used in the energy to drive the process."

Stuart Licht, et al. "STEP Cement: Solar Thermal Electrochemical Production of CaO without CO2 emission." Chem. Commun., DOI: 10.1039/C2CC31341C

Solar Powered Cement Production Technology Takes Off at George Washington University

By Ovidiu Sandru on May 18, 2012

The Green Optimistic

alternative energy news, environmental awareness

Right now, cement production accounts for 5 to 6 percent of total man-made greenhouse gases. Producing lime, its key ingredient, uses an energy-intensive process that needs temperatures as high as 1,500 degrees Celsius, and that can only be obtained with fossil fuels. A new, rudimentary contraption at George Washington University does all that with solar power and without emitting carbon dioxide.

The <u>team</u> led by **Stuart Licht** used three Fresnel lenses to concentrate sunlight onto two different processes: one that heats up limestone and the other that produces electricity to perform electrolysis, that breaks the hot carbonate mixture and causes the lime to precipitate out of it, making it readily-collectible.

Around 60 percent of the carbon dioxide emissions from the production of cement is considered to be unavoidable. Licht's team proved otherwise: they "hacked" the process to produce oxygen and carbon/carbon monoxide, which can be further recycled.

By mixing solid calcium carbonate with liquid lithium carbonate, and preheating the solution to 900 degrees Celsius, the scientists make up a liquid that acts like an electrolyte. The high temperature helps the entire electrolysis process to produce lime, which would be harder to collect at lower temperatures, because it would be more soluble.

However, the lime production system has to go a long way until it's commercially-available. One of the roadblocks is that the energy (heat) has to be stored to counter the effects of the intermittent nature of solar power. Cited solutions include storing it in molten salts, just like it's done in CSP (concentrated solar power) systems.

If it proves to work as advertised, this technology could offset up to 6 percent of our total greenhouse gas emissions, as I said earlier. What strikes me is that nobody had thought so far about making this contraption possible, and everyone is using expensive fossil fuels, when the Sun is readily available for anyone to use... weird or what?

On the other hand, it's not uncommon for such inventions to create spin-offs that would later become industry leaders. We shall wait and see.

Technology / Alternative Energy

Turning Carbon Dioxide Into Bioplastics: 2 Birds With 1 Stone?

One chemist says he can slash atmospheric carbon dioxide to preindustrial levels in a decade, harnessing the sun's power to make useful products at the same time.

by Elizabeth Svoboda published online August 1, 2011

Stuart Licht's STEP (Solar Thermal Electrochemical Production) process uses solar energy to break down atmospheric CO_2 and other compounds into their constituent elements. These elements would ultimately be recombined to make plastics and fuel.

At the heart of the <u>STEP</u> (pdf) process is an <u>electrolysis cell</u>, a device that uses electricity to break down chemical compounds. A prototype version of the cell, consists of two <u>electrodes</u>—positively and negatively charged—submerged in a chemical bath containing the target compound. When electric current passes through the cell, positively charged ions from the compound are attracted to the negative coil and negatively charged ions are attracted to the positive coil, splitting the material and yielding its constituent elements along with new compounds.

The hotter the contents of the cell, the less voltage required to initiate this reaction. Using heat from an external solar array, Licht, who's based at George Washington University, can raise the temperature so high that only a minute electrical current, supplied by <u>solar photovoltaic cells</u>, is needed to split the compounds. When carbon dioxide is fed into the cell, electricity splits it into oxygen and solid carbon or carbon monoxide gas that could then be used to manufacture many different products and fuels.

Scientists have been watching Licht's progress closely. "It's an interesting approach to using the sun for manufacturing and fuel production," says <u>Ellen Stechel</u>, manager of concentrated solar technologies at <u>Sandia National Laboratories</u>. "But can it be cost-competitive?" Because of the cell's simplicity, Licht says, the answer is yes. If he could construct STEP solar arrays dispersed across 4 percent of the Sahara, he would be able to convert 92 billion tons of carbon dioxide into solid carbon each year. At that rate, he could eliminate one-tenth of all the carbon dioxide released since the Industrial Revolution in a single year.

Solar-powered process could decrease carbon dioxide to pre-industrial levels in 10 years

In the Solar Thermal Electrochemical Photo (STEP) carbon capture process, the sun's visible light and heat are used to capture large amounts of carbon dioxide from the atmosphere and convert it to solid carbon for storage or carbon monoxide for fuel generation. Image copyright: Stuart Licht, et al. ©2010 American Chemical Society.

(PhysOrg.com) -- By using the sun's visible light and heat to power an electrolysis cell that captures and converts carbon dioxide from the air, a new technique could impressively clean the atmosphere and produce fuel feedstock at the same time. The key advantage of the new solar carbon capture process is that it simultaneously uses the solar visible and solar thermal components, whereas the latter is usually regarded as detrimental due to the degradation that heat causes to photovoltaic materials. However, the new method uses the sun's heat to convert more solar energy into carbon than either photovoltaic or solar thermal processes alone.

The new process, called Solar Thermal Electrochemical Photo (STEP) carbon capture, was recently suggested theoretically by a team of scientists from George Washington University and Howard University, both in Washington, DC. Now, in a paper just published in *The Journal of Physical Chemistry Letters*, the scientists have experimentally demonstrated the STEP process for the first time.

"The significance of the study is twofold," Stuart Licht, a chemistry professor at George Washington University, told *PhysOrg.com*. "Carbon dioxide, a non-reactive and normally difficult-to-remove compound, can be easily captured with solar energy using our new low-energy, lithium carbonate electrolysis STEP process, and with scale-up, sufficient resources exist for STEP to decrease carbon dioxide levels in the atmosphere to pre-industrial levels within 10 years."

As the scientists explain, the process uses visible sunlight to power an electrolysis cell for splitting carbon dioxide, and also uses solar thermal energy to heat the cell in order to decrease the energy required for this conversion process. The electrolysis cell splits carbon dioxide into either solid carbon (when the reaction occurs at temperatures between 750°C and 850°C) or carbon monoxide (when the reaction occurs at temperatures above 950°C). These kinds of temperatures are much higher than those typically used for carbon-splitting electrolysis reactions (e.g., 25°C), but the advantage of reactions at higher temperatures is that they require less energy to power the reaction than at lower temperatures.

The STEP process is the first and only method that incorporates both visible and thermal energy from the sun for carbon capture. Radiation from the full solar spectrum - including heat - is not usually considered an advantage in solar technologies due to heat's damage to photovoltaics. Even in the best solar cells, a large

"Solar-powered process could decrease carbon dioxide to pre-industrial levels in 10 years." PHYSorg.com. 22 Jul 2010. www.physorg.com/news199005915.html

part of sunlight is discarded as intrinsically insufficient to drive solar cells as it is sub-bandgap, and so it is lost as waste heat.

By showing how to take advantage of both the sun's heat and light for capturing and splitting carbon dioxide, the STEP process is fundamentally capable of converting more solar energy than either photovoltaic or solar thermal processes alone. The experiments in this study showed that the technique could capture carbon dioxide and convert it into carbon with a solar efficiency from 34% to 50%, depending on the thermal component. While carbon could be stored, the production of carbon monoxide could later be used to synthesize jet, kerosene, and diesel fuels, with the help of hydrogen generated by STEP water splitting.

"We are exploring the STEP generation of synthetic jet fuel and synthetic diesel," Licht said, "and in addition to carbon capture, we are developing STEP processes to generate the staples predicted in our original theory, such as a variety of metals and bleach."

• Learn about becoming PhysOrg.com sponsor and ads-free website

More information: Stuart Licht, Baohui Wang, Susanta Ghosh, Hina Ayub, Dianlu Jiang, and Jason Ganley." J. Phys. Chem. Lett. 2010. 11 2363-2368. DOI:10.1021/jz100829s

Copyright 2010 PhysOrg.com.

All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

This document is subject to copyright. Apart from any fair dealing for the purpose of private study, research, no part may be reproduced without the written permission. The content is provided for information purposes only.

STEP: A different solar energy conversion process

<u>Solar Thermal Electrochemical Photo</u> generation of energetic molecules

Home » August 2, 2010 Issue » Science & Technology » Concentrates » Solar Photo-Thermal Electrochemistry Demonstrated

AUGUST 2, 2010 | VOLUME 88, NUMBER 31 | P. 37 | DOI: 10.1021/CEN072210105324

Solar Photo-Thermal Electrochemistry Demonstrated

A new process uses the full power of the sun--both visible light and thermal heating--to drive electrochemical reactions

Stephen K. Ritter

A new type of solar-energy process that can use the full power of the sun-both visible light and thermal heating-to drive electrochemical reactions is being reported by Stuart Licht of George Washington University and colleagues (J. Phys. Chem. Lett., DOI: 10.1021/jz100829s). Last year, Licht presented the theoretical basis for the solar thermal electrochemical photo process and proposed that it could be a means for mitigating carbon dioxide emissions (J. Phys. Chem. C 2009, 113, 16283). Licht and coworkers have now partially demonstrated the concept by using full-solar-spectrum artificial light in combination with a molten lithium carbonate electrolysis cell. CO2 bubbled into the carbonate reduces to solid carbon on the cell's electrode. Visible light powers a photovoltaic device that drives the electrochemical reduction of CO2 as the thermal energy heats the system up to as much as 950 °C. The high temperature keeps the carbonate molten and reduces the energy required for the electrolysis. Overall, the system is more energy efficient than photovoltaics or solar thermal processes alone, Licht notes. The solid carbon could be stored or used as a filler material, he says. By adjusting the reaction conditions, CO2 is reduced to CO, Licht adds, which subsequently could be combined with H2 to make transportation fuels and chemical feedstocks.

Chemical & Engineering News ISSN 0009-2347 Copyright © 2010 American Chemical Society

Email this article to a friend

- A Print this article
- Email the editor

A Share...

More Science & Technology Concentrates

- Shaking Paves Way To Clean DNA
- Solar Photo-Thermal Electrochemistry Demonstrated
- <u>Crystalline Sheets, Courtesy Of A</u> <u>Cosolvent</u>
- Mass Tags Quantify Glycosylation
- MicroRNAs' Role In Neurodegeneration
- Pesticide Activity Extends To The Brain
 - Atomic Images May Aid Structure Elucidation
- Details Emerge On Alkane Biosynthesis

Topics Covered

solar reactor, carbon dioxide, electrolysis, carbon capture

nature.com blogs

Beautiful Photochemistry Chemistry Under a New Light

The Iron Age Reinvented?

STEP production of Fe(0)

First was chemistry, then came writing. Illiterate by definition, prehistoric people had nevertheless been producing their bronze and iron tools for several centuries before they figured out that writing too was an important step forward for humanity. Extraction of iron was carried out by heating its ores (magnetite, Fe_3O_4 , and hematite, Fe_2O_3) over a charcoal fire. Carbon reduces Fe(II) and Fe(III) by combining with oxygen to release CO_2 ; this forms an Fe(0) rich solid. Since then, we replaced charcoal with carbon coke but we essentially produce steel and cast iron in the same way.

As the metallurgic industry is one of the main sources of atmospheric CO_2 , a novel technological approach would be a most needed breakthrough.

Research in this direction has taken Prof. Licht at George Washington University (USA) to develop a solar thermal electrochemical photo (STEP) process, as it has been called, that drives iron deposition at the cathode of an electrolytic cell in which the iron ore is dissolved in molten Li_2CO_3 (m.p. 723 °C) heated at 800°C.

Visible light is used to power a photovoltaic cell whose circuit is closed by the electrolysis of the Fe ore. In a testing device, 800 mg of Fe were collected at the cathode following a 0.5-A $6-e^-$ electrolysis of Fe₂O₃ for 2 hours. If the scaling-up does not present major hurdles, STEP process, could potentially reinvent the way we have been producing iron-based tools for the last 5000 years or so.

["High Solubility Pathway for the Carbon Dioxide Free Production of Iron", S. Licht, B. Wang, *Chem. Commun.* **2010**, 46, 7004.]

Departmental page of Prof. Stuart Licht at George Washington University (USA)

Papers of the same authors on related topics "A New Solar Carbon Capture Process: Solar Thermal Electrochemical Photo (STEP) Carbon Capture", S. Licht, B. Wang, S. Ghosh, H. Ayub, D. Jiang, J. Ganley, *J. Phys. Chem. Lett.* **2010**, 1, 2363.

"STEP (Solar Thermal Electrochemical Photo) Generation of Energetic Molecules: A Solar Chemical Process to End Anthropogenic Global Warming", S. Licht, *J. Phys. Chem. C* **2009**, 113, 16283.

Sept. 23, 2010

Erasing carbon's footprint with sunshine

Hank Hogan, Contributing Editor, hank.hogan@photonics.com

The key to rolling back climate change could be the sun, according to George Washington University researchers who have demonstrated a carbon capture process that promises to use solar power to remove carbon dioxide from the air. As a bonus, the technique could generate a profitable product.

"Because the process simultaneously uses both solar thermal and solar visible, it captures and uses more solar energy than solar cells, and it removes and converts carbon dioxide into a useful form," said Stuart Licht, a chemistry professor at the university's Columbian College of Arts and Sciences in Ashburn, Va.

Licht was lead author on a *Journal of Physical Chemistry Letters* paper published online on Aug. 18, 2009, describing the process, which the researchers dubbed solar thermal electrochemical photo, or STEP, carbon capture. It has a carbon dioxide capture efficiency of up to 50 percent; i.e., as much as half of the energy in sunlight can be used to remove CO_2 from the air.

The end product is solid carbon or carbon monoxide. The latter could be used as feedstock for synthetic jet, kerosene and diesel fuels as well as for plastics and medicine. The revenue derived from selling such feedstock or the solid carbon could change the economics of combating rising CO_2 levels, making mitigation much more attractive.

In a demonstration of the new carbon capture technique, the investigators bubbled CO_2 through an electrolysis cell filled with molten lithium carbonate. They used concentrated solar thermal, or infrared, energy to heat the cell to a temperature above the 723 °C melting point of the material, forcing the temperature as high as 950 °C. They used photovoltaics to convert the visible part of sunlight into electricity that drove the electrochemical reaction.

Sunshine powers an electrolysis cell (right) that turns atmospheric CO_2 into solid carbon (left) or carbon monoxide. Courtesy of Stuart Licht, George Washington University. Reprinted from the Journal of Physical Chemistry Letters.

The high temperature decreased the energy required for that reaction. What's more, the output of that reaction depended upon the temperature.

In their demonstration, the researchers plated out solid carbon on the cathode of the electrolysis cell at temperatures as low as 750 $^{\circ}$ C. At higher temperatures, the amount of solid carbon decreased and the production of gaseous carbon monoxide increased. At 950 $^{\circ}$ C, only the gas was produced.

Because the technique is highly immune to poisoning effects, it could be used to directly treat the waste stream coming out of a smokestack, something that Licht noted was not possible with other proposed carbon capture methods.

Calculations showed that it is feasible with STEP carbon capture to reduce CO_2 in the atmosphere to preindustrial levels within 10 years. There is enough annual lithium carbonate production to do this, although it would require a significant fraction of the world's output. Roughly 700 km² of photovoltaics would be needed. How long it would take to remove the CO_2 , Licht said, depends on the commitment to capturing carbon.

The technique also could use potassium carbonate, of which there is a much larger potential supply than there is of lithium carbonate. The downside is that using potassium would require higher electrolysis potentials and would therefore be not as attractive as the lithium alternative.

The STEP method also could reduce atmospheric CO_2 in other ways. Licht and his team showed in a *Chemical Communications* paper published online on Aug. 23, 2010, that a variation of the STEP technique can produce pure iron from two common ores, hematite and magnetite, without emitting carbon dioxide. This approach could significantly reduce the estimated 6.8 trillion tons of CO_2 emitted each year by the iron industry.

Licht said that the group welcomes commercial or governmental inquiries about the STEP technique. He added that the method can be used for environmentally benign generation of fuels, a process that requires teaming it up with solar-energy-produced hydrogen.

Noting that the extraction of CO_2 from the air is the culmination of efforts stretching over 20 years, he said, "Until now, it has been a challenge to convert the stable molecule carbon dioxide into a useful product and remove it from the atmosphere. It is exciting to watch carbon dioxide be bubbled into the STEP process and be easily converted into solid carbon.

Using solar energy to power the hydrogen economy of the future

June 6, 6:43 PM Varun Saxena

Hydrogen has the potential to solve the world's energy crisis. It is energetic and abundant, and hydrogen fuel does not emit Carbon Dioxide. Technical and economic challenges have prevented hydrogen from becoming a major source of the world's energy in spite of its promising qualities. But that could change soon. Chemistry Professor Stuart Licht, of George Washington University, and his research team are attempting to perfect a promising method of hydrogen energy production: the solar thermal electrochemical photo conversion of energy, or STEP process, for short. He presented his research at George Washington's annual <u>Solar Symposium</u>, held on April 19th, 2010.

Why is hydrogen fuel the best choice for meeting our transportation demands?

If produced in a sustainable manner, hydrogen fuel is superior to its competitors. Electric cars are constrained by the limitations of the battery and six percent of the energy that is produced is lost on the electrical power grid, <u>according to Licht</u>. Biofuels are an inefficient form of energy production. Their solar to fuel energy efficiencies are less than ten percent. Because of the limitations of photosynthesis, the crops contain about ten percent of the energy that they absorb from the sun, and even more energy is lost during the production of biofuels. In addition, growing feedstock for biofuels pits fuel production against food production, and results in the loss of wilderness.

Why is the STEP process better than other methods of producing hydrogen fuel?

Ninety percent of the hydrogen that is produced is derived from fossil fuels, which results in carbon dioxide emissions. Using solar power to produce hydrogen results in no carbon dioxide emissions. The two methods of producing hydrogen fuel with solar power are the solar thermal method and the solar photovoltaic method. The former method involves heating water up to very high temperatures until it breaks down into its component elements, hydrogen and oxygen. It is technically challenging because the elements tend to recombine when they are brought down to lower temperatures. Many reactions must be performed in order to separate hydrogen from oxygen so that they do not recombine. As a result, over 90% of the initial energy input is lost. Similarly, the solar photovoltaic method is only 10 to 20% solar to hydrogen fuel efficient. It involves using a traditional solar photovoltaic cell to produce electricity, which then splits water. The STEP process can separate hydrogen from water at efficiencies above 30%.

How does the STEP process work?

Unlike the competing methods, the STEP process uses the entire solar spectrum. Dialetic beam splitters, described by Licht as "hot mirrors," split solar energy into two components, the visible spectrum (employed by the solar photovoltaic method) and the invisible, or thermal spectrum (which is employed by the solar thermal method). The thermal energy is used to heat an electrolysis chamber to molten temperatures, and the visible portion is used to produce electricity to split the water. When the electrolysis chamber is heated, the amount of energy needed to split water falls from 1.2 to .7 volts. Silicon based solar concentrators can generate .8 volts of electricity, enough to split the water at high temperatures.

Because it is a relatively efficient process, and requires a lower voltage to split hydrogen, the STEP process is more cost competitive than competing methods of hydrogen production. According to Licht, independent studies confirm that the STEP process can produce hydrogen at less than half the cost of competing water splitting technologies. As a result, Licht's research team and partner company <u>Lynntech</u> have signed a contract to built STEP hydrogen generators for the US Air Force. "We can envision someday, a solar hydrogen process in which we might have STEP hydrogen generators generating hydrogen for cars," Licht proclaimed.

Can the STEP process "split" other molecules?

Yes. The STEP process can be used to create carbon monoxide (CO) from carbon dioxide (C02). The energy needed to split carbon dioxide falls faster than that of water at increasing temperatures, and the result is that carbon monoxide can be created at efficiencies of over fifty percent using the STEP process. Carbon monoxide and hydrogen can be used to make synthetic diesel, and at a lower cost than conventional diesel. Currently synthetic diesel is produced in South Africa. But when coal is converted to carbon monoxide, carbon dioxide is a byproduct. Because the STEP process uses only solar energy, and pure carbon dioxide is used as the input, it can produce synthetic diesel without increasing green house gas emissions.

Green Car Congress

Energy, technologies, issues and policies for sustainable mobility

GWU Researcher Developing Efficient Solar Chemical Process for Generation of Energetic Molecules and Conversion of CO2

5 September 2009

Dr. Stuart Licht (<u>earlier post</u>) at George Washington University is developing a solar-driven process that, he says, could efficiently replace current industrial processes for the production of certain energetic molecules such as hydrogen, metals and chlorine, which are responsible for a large component of anthropogenic CO₂. It can also convert captured anthropogenic CO₂, generated by burning fossil fuels, to CO and O₂ via high-temperature electrolysis. A paper on his work is in press for the ACS' Journal of Physical Chemistry, C.

(Reft) Charge and heat flow in the STEP system. Colored arrows indicate the direction of heat flow (bue), and reagent flow (green). (Right) Auxiliary components to reach higher STEP temperatures and/or decrease the heat incident on the PV. Light harvesting can use various optical concentrators sub-bandgap radiation away from the PV onto the electrotycer. Licht, 2009. Click to enlarge.

One third of the global industrial sector's annual emission of 1×10^{10} metric tons of CO₂ is released in the production of metals and chlorine. This, together with the additional CO₂ from electrical generation, heating and transportation, comprise the majority of CO₂ emissions.

The STEP (Solar Thermal Electrochemical Photo) process fundamentally captures sunlight more efficiently than photovoltaics by using the full (UV, visible and infrared) sunlight. More than 50% of solar energy is captured and used. Conventional photovoltaics lose much of the visible sunlight, and can not use the infrared sunlight at all.

STEP distinguishes radiation that is intrinsically energy sufficient to drive photovoltaic charge transfer and applies all excess solar thermal energy to heat the electrolysis reaction chamber and to decrease the energy of endothermic electrolysis reactions.

The process comprises five basic steps:

- i. sunlight harvesting and concentration,
- electron/hole separation and electronic charge transfer driven by superbandgap energy in the photovoltaic,
- iii. transfer of sub-bandgap and excess super-bandgap radiation to step up heat to the electrolysis chamber,
- iv. high-temperature, low-energy electrolysis forming energy-rich products, and v. cycle completion by preheating of the electrolysis reactant through heat
 - exchange with the energetic electrolysis products.

Solar heating can decrease the energy to drive a range of electrolysis processes. The electrochemical driving force for a variety of chemicals of widespread use by society will be shown to significantly decrease with increasing temperature...As an example of the STEP solar energy efficiency gains, this study focuses on CO₂ splitting potentials...these potentials (black

Calculated potential needed to electrolyze carbon dioxide or water The indicated decrease in electrolysis energy, with increase in temperature, provides energy savings in the STEP process. High perperature is accessible through excess solar heat. Licht, 2009. A molten carbonate bath electrolysis cell, fed by CO2,

generates CO—an important syngas component and, which when reacted with H₂, forms methanol. Molten alkali carbonate electrolyte fuel cells typically operate at 650 °C. Licht plans a follow-up study to present experimental measurements of the CO₂ splitting electrochemical potential (to CO or solid C), with increasing temperature.

In addition to the removal of CO₂, the STEP process is shown to be consistent with the efficient solar generation of a variety of metals, as well as chlorine, in place of conventional industrial processes. In total, these processes are responsible for the majority of anthropogenic CO₂ release, and their replacement by STEP processes will end the root cause of anthropogenic global warming.

The STEP process occurs at solar energy conversion efficiency greater than attainable by photovoltaics alone. This study provides a path for a transition beyond the fossil fuel, electrical or hydrogen economy, to a renewable chemical economy based on the direct formulation of the materials needed by society.

-Licht, 2009

Resources

 Stuart Licht (2009) STEP (Solar Thermal Electrochemical Photo) Generation of Energetic Molecules: A Solar Chemical Process to End Anthropogenic Global Warming. *Journal of Physical Chemistry, C*, in press. doi: <u>10.1021/jp9044644</u>

Tapping sun's light and heat to make hydrogen

Environmentally friendly fuel cells may someday power most cars, homes, and industries. Yet the energy they supply won't be all that clean if the hydrogen that the fuel cells consume derives from fossil fuels. So says Stuart Licht of the University of Massachusetts in Boston, who leads a U.S.–Israeli team of researchers that has demonstrated a new solar-powered way to produce hydrogen from water.

Typically in solar-based electricity generation, only a fraction of the sun's visible and ultraviolet light produces electrons with sufficient energy to split water into hydrogen and oxygen. In the new method, the researchers first use the sun's infrared radiation to heat molten sodium hydroxide mixed with water to oven temperatures that prime the water molecules to break apart.

Under these conditions, even electrons with too little energy to split water molecules at ambient temperatures cleave the heated ones. Thus, hydrogen could be produced using widely available silicon photovoltaic cells, Licht says.

In the Dec. 8, 2003 *Chemical Communications*, Licht and his colleagues report that the new approach achieves a hydrogen-production efficiency of 30 percent and has the potential to do even better. Another Licht-led team held the previous efficiency record of 18 percent using specialized solar cells (*SN: 9/16/00, p. 182*). —P.W.

"This is a fundamental step in hydrogen production. This confirms that we can create tremendous amounts of hydrogen simply by using solar energy and water. ...We're heading toward a society that uses clean hydrogen as its primary fuel, and that's wonderful."

Professor Stuart Licht, University of Massachusetts <u>Shedding New Light on Fuel Cells</u> *Amit Asaravala* Wired December 2,2003

Unlike current solar hydrogen generators that only make use of the electrical portion of light particles, the UMass process also harnesses the thermal energy produced by the infrared portion of the spectrum. This energy is used to heat the water to 600 degrees Celsius, at which point it is injected into an alkaline solution and then forced to split into hydrogen and oxygen molecules using electrical energy. ...A paper detailing the new technique is scheduled to appear in a December issue of <u>Chemical Communications</u>.

Developments to Watch

EDITED BY OTIS PORT

New York; October 23, 2000; Otis Port; Page: 101: Copyright 2000 The McGraw-Hill Companies, Inc.

The Key to Cleaner Fuel Cells? It's in the Water

FUEL-CELL-POWERED CARS and trucks promise to relegate today's pollution-belching engines to the scrap hep7ap. Bigger fuel cells could do the same for coal-fired power plants and industrial furnaces. To get the maximum environmental benefit, though, fuel cells should be fed hydrogen fuel, not gasoline, natural gas, or the other alternatives used by most of the fuel cells now on the market or under development. Chemically converting hydrogen into electricity with a fuel cell produces no pollution, only water.

Unfortunately, there's scant infrastructure for distributing hydrogen, so it isn't practical for cars. But suppose the gas could be produced locally, on demand, from ordinary water. Splitting water molecules into hydrogen and oxygen has long been possible--just not economical. Now, a small Israeli-German-Japanese research team led by Stuart Licht, a professor of chemistry at the Technion-Israel-Israel Institute of Technology in Haifa, is closing in on what could be a commercially feasible way to tap water for its hydrogen--by using sunlight.

Licht's team reports in the Sept. 14 issue of the Journal of Physical Chemistry B that it has developed a system based on a photovoltaic device, or solar cell, that is 18.3% efficient at splitting water molecules. That's a 50% improvement over the previous best--and might be on the threshold of being viable for the corner filling station. But if 18.3% won't do the trick, the researchers believe further refinements could substantially boost the efficiency of their water-splitter, perhaps to as much as 31%.

Chemical & Engineering News

SCIENCE/TECHNOLOGY CONCENTRATES October 2, 2000 Volume 78, Number 40

SOLAR CELL SPLITS WATER WITH RECORD EFFICIENCY

A team of scientists has developed a solar photovoltaic-electrolysis cell that splits water into hydrogen and oxygen with 18.3% conversion efficiency. The system consists of a photovoltaic sensitizer with a layered composite of aluminum gallium arsenide and silicon semiconductors to harvest visible light and an electrolysis component with a platinum black or RuO₂ electrode to catalyze water splitting [J. Phys. Chem. B, 104, 8920 (2000)]. Generation of clean hydrogen fuel with 18% solar energy conversion efficiency is unprecedented, according to team leader Stuart Licht, chemistry professor at Technion--Israel Institute of Technology, Haifa. "We have also calculated that [such] systems are capable of attaining over 30% solar photoelectrolysis conversion efficiency," he tells C&EN. "Previous models predicted that only 16% conversion was possible, and, until now, only 12% efficiency has been achieved experimentally." The group achieved the record efficiency by matching the maximum solar energy photopotential of the photovoltaic sensitizer with the water electrolysis thermodynamic potential and by using an electrolysis component that is very large compared with the sensitizer.

SUNDAY TELEGRAM

SUNDAY TELEGRAM, NOVEMBER 29, 1992

Stuart Licht in the laboratory

Liquid solar cell can store power

By John J. Monahan

Staff Reporter

WORCESTER — Rainy days don't bother Stuart Licht, one of the world's leading solar energy researchers, so much anymore.

The 38-year-old chemist smiled as he looked out his office win-dow at Clark University on a rainy November afternoon, not-ing that clouds and nightfall ice primary obstacles

STUART LICHT

longer a barrier to future widespread use of solar energy Four years ago, he and his re-search team at Clark University created the world's first solar electric cell that works in the

The liquid photo-electrochemi-cal cells that Licht and his re-search assistant, India-born Dharmasena Peramunage, are developing are unlike the con-ventional solid state solar cells found in calculators and space-

craft. The new cells not only convert light to electricity, but can store some of the power internal-ly, discharging stored power auto-matically when the light source is removed.

That is but one of the marvels of the liquid solar cell technology Licht and Peramunage are pioneering in a small one-room laboratory at the college's Sac-kler Science Center.

The paim-sized cells also pro-duce hydrogen as they work, a clean-burning fuel that can be used to power cars.

Turn to CHEMIST/Page 86

Chemist is unlocking the secrets of solar power

Continued From Page B1

In the last four years, tedious ex-perimentation has led to one breakthrough after another, bring-ing the technology giant steps loward Licht's dream of making solar power available for wide-spread use as a clean and inexpen-sive power source for the future.

The first viable liquid chemical The first visible liquid chemical solar cells were discovered in 1976 simultaneously in three laborator-ies in the United States and Israel. Since then, Licht has been one of the few chemists in the world who continued developing their potential.

In 1985, he boosted the rate the liquid cells convert light to electri-cal energy to 12.7 percent of the en-ergy contained in sunlight.

In 1006, his modifications al-lowed a 100-fold improvement in the operating lifetime of the colls, overcoming what previously had been a major shortcoming of the technolettime of the technolettime of the technology.

In 1987, experimentation aimed In 1987, experimentation nimed at overcoming the intermittent na-ture of solar energy produced the cell that stored energy and could provide power in the dark, and other modifications boosted the ef-ficiency of the cells to 15 percent.

Two years ago, their research roduced even more dramatic results

As Licht explained it, efforts to boost efficiency focused on altera-Itons of the liquid electrolyte used in the energy conversion process. They had found one type of liquid was breaking down into impurities producing bizarre results in their lests

At that point, he said, the re-search team decided to use just the supersulphides that had been caus-ing the problem in the previous experiments.

"In science, sometimes you get the best results from looking at the deviant factors," Licht said of that effort. The odd test with what had been a bothersome impurity pro-duced record-breaking voltage from the cell.

In 1990, the results were pub-lished in the British science journal Nature, crediting Licht and Peramunage with a world "solar cell best" achieving an efficiency of 16.4 percent and a world record solar cell voltage of 1.2 volts.

While that is the equivalent of coltage found in a small flashlight battery, it is almost twice that ever Since by any solar cell. Meanwhile the 16.4 percent efficiency achieve-ment equals that of conventional solid state cells that operate at lower voltage, and de not hold the other advantages of the liquid cell technology technology.

The laboratory where Licht and his team, which includes Peramu-nage, four graduate students and two undergraduates, have devel-oped the solar breakthroughs be-lies the vast significance their re-search could have for the world.

The Sackler Science Center lab is about the size of a large bed-room, with some older looking chemical mixing hoods in the cor-ners two long lab baches in the ners, two long lab benches in the middle with homemade computers and video screens on the shelves, and the kind of tubing and burners typical of a school chemistry lab.

The roof of the four-story build-ing has become the proving ground for their solar cells.

Licht said the scale of the opera-tion provides its own advantages with a freedom to test out new ideas as they occur to the team.

What they lack in funding, com-pared to large multi-million dollar

We have a chance to wrestle with the secrets of the universe. It's a very fulfilling life. I can't see how anyone who has an opportunity to find a piece of information no one else has ever had could pass it up. I can't see why anyone would do anything else.

STUART LICHT

research centers, he said, they are often able to make up by designing their own equipment. The team built their own water purification system and when they needed a computer that could make as many as 50,000 measurements per sec-ond, they rigged up their comput-ers to do the job. ers to do the job.

In his mind, the quality of the sel-nce doesn't always depend on ence doe spending.

"Some scientists follow the money, I follow the dream," Licht said. "We have done substantial electro-chemistry here for several years now for less than \$100,000 per year."

Behind Licht's success is a com-plete command and fascination with chemistry.

He displays confidence in his ability to unravel mysteries of the physical world when he talks about his work, and seems to revel in the challenges. Chemistry has always been the focus of his life.

He was been in West Roxbury into a family of chemists.

His grandfather, the late Joseph Licht, worked as a bench chemist for Stanley Tools in Connecticut and sent Stuart's father, Truman S, Light, through Harvard. His father taught chemistry at Boston Univer-sity when Licht was growing up. His mother, Arlene Light, is an in-dustrial chemist for the Kendall

His routine is one of 14- and 16-hour days, working 12 days at the campus and spending two days off with his children at his home in a quiet section of Charlion.

The basic challenge of Licht's re search is to understand what happens to a photon or light particle when it comes into contact with the semiconductor of the solar cell and frees an electron to produce electricty.

Licht published the first expla-nation of that process in the chemi-cal solar cell in Nature in 1987 and remains focused on the phenomena.

It happens in billionths of a sec-ond, but for him the challenge is to identify what is slowing that pro-cess so that only a fraction of the light energy is converted. If he can find a way to speed it up, by testing endless options for combinations of materials, temperature and other conditions, he knows he would be able to boost the energy-producing efficiency of the cell. efficiency of the cell.

"It's not every day that we double the voltage. But every day we gain an increment of knowledge," Licht sald.

"We have a chance to wrestle with the secrets of the universe. It's a very fulfilling life," he said, "I can't see how anyone who has an opportunity to find a picce of infor-mation no one else has ever had could pass it up. I can't see why anyone would do anything else."

After nearly two decades of dedi-cated research, Licht now believes it is time for solar technology to move from the lab to applications research.

Licht noted that the government Licht noted that the government evit off funding for liquid solar cell research in 1985, effectively ending research that was ongoing at the Wiezman Institute of Science in Is-rael, Bell Laboratorics, and Massa-chusetts Institute of Technology, where the first viable electrochem-leal solar cells were simultaneous-ly discovered in 1976.

Since then he said the only sciensince then he said the only scien-tists continuing to explore the chemical side of solar energy have been a small group at California In-stitute of Technology and his team at Clark.

"Primarily it has been Clark University's belief in these cells that has kept the research going," Licht said.

Currently the team is working on a project to develop a new type of battery for use with the liquid cell, Licht also has plans to attempt other breakthroughs.

"I would like to break the world's

, "I would like to break the world's record for the amount of energy we can get out of electro-chemical ma-terials," he said. He also hopes to accelerate ions to near light speed, something that has never been done before, "That would open up a new realm of chemistry," he said.

SCIENTIFIC AMERICAN

April 1992 Volume 266 Number 4

LIQUID SOLAR CELLS

Chemist Stuart Licht of Clark University in Worcester is developing a liquid solar cell capable of converting more of the sun's energy to electricity and of producing a voltage twice as high as that of conventional photovoltaic cells. Liquid solar cells can be adapted to store energy for use when there is no sunlight and also can generate valuable chemical byproducts, such as hydrogen, which can be used to run cars without pollution.

Licht's liquid solar cell is compact enough to hold in the hand. It consists of two electrodes immersed in a chemical solution. Energy is generated when a semiconductor is hit by sunlight, generating a stream of both electrons and chemicals. The electrons then flow through a wire, from which a current can be tapped. After the energy is tapped, the electrons flow back into the solution and return to the semiconductor, insuring continued energy.

THE WALL STREET JOURNAL. MARKETPLACE

Solar Cells That Hum After the Sun's Gone

WITHIN a few years, solar cells may be available that work in the dark.

The photoelectrochemical cells resemble a cross between the familiar solid-state solar cells that convert light to electricity and old-fashioned, wet-cell batteries. They combine semiconductors, which make electricity when hit by light rays, with electrodes bathed in electrolytes, which enable the cells to be charged up like car batteries.

In bright light, the cells both make electricity and recharge. In low-light conditions, their stored energy can be tapped. The combination promises a leap forward for nonpolluting solar power, which has been hindered by its intermittent nature.

Researchers have faced formidable problems making PEC cells practical, though. Their semiconductors have tended to corrode quickly. And the cells' efficiencies—the proportion of light energy converted to the electrical kind—have been relatively low compared with solid-s:ate altornatives, which have reached 25% efficiency in laboratory tests.

Recently, a team led by chemist Stuart Licht at Clark University in Worcester, Mass., has made steady progress in overcoming the problems. By fine-tuning levels of electrolyte constituents, the team has achieved efficiencies of about 17% in PEC cells that work for weeks. "The exciting thing now," says Mr. Licht. "is that there are theoretical indications liquid solar cells can access more of the sun's energy than solid-state cells can."

Several companies have expressed interest in the technology, which may lead to commercial cells in a few years, he adds.

THE INDEPENDENT

A cheaper way to touch the sun

AMERICAN chemists could be close to converting sunlight into a cheap source of energy. Dr Stuart Licht and a team from Clark University in Worcester, Massachusetts, are perfecting a new solar cell that works like a conventional battery as it converts sunlight into electrical power.

The more familiar solid-state solar cells or photo-voltaic devices (which produce electric current at the junction of two substances exposed to light), are found in spacecraft and calculators. These are highly developed and efficient, but relatively expensive to produce. This makes them too costly to generate solar electricity on a large scale, even though solar power would not contribute to global warming. The new device, called a photoelectrochemical cell, though less efficient than solid-state devices, is much cheaper to make. These cells could pose a serious challenge to the supremacy of solid-state devices for solar energy conversion. Turning the sun's light into che-

Turning the sun's light into chemical energy is not new. For billions of years, photosynthesis has provided the basic chemical driving force for practically all life on earth. Plants convert sunlight, carbon dioxide and water into highenergy carbohydrates, liberating oxygen in the process.

From an industrial point of view, though, photosynthesis is highly inefficient. On average, only 1 per cent of sunlight is converted into energy-yielding compounds such as wood. For an industrial society, such a low efficiency would mean turning over vast tracts of land to solar energy conversion.

The most promising approach so far to solar energy seems to be to convert sunlight directly into electricity. Up to now, this has meant moving away from chemistry and biochemistry and into the realms of solid-state physics.

When light shines on a semiconducting material, it "knocks" electrons out of the outer orbits of the atoms of the material and so generates an electric current. But there is a snag. The conductivity is short-lived. Physicists tackle this Lionel Milgrom explains a revolutionary solar cell that improves the efficiency of converting sunlight into energy

Solar cells at Adrano in Sicily: conventional systems do not harm the environment but need vast areas of land

by grafting on another piece of semi-conductor with a slightly different structure. Where the two semi-conductors meet is called a p-n junction and the effect is to keep the current flowing for as long as light falls on the device.

These cells are reliable and highly efficient — the best laboratory models work at 25-26 per cent efficiency. But they are expensive to make: fashioning the all-important p-n junction requires all the skills of modern electronics technology.

The photoelectrochemical cell has been developed to help solve the problem. Chemists have put the semi-conductor in contact with an electrolyte - a waterbased solution which has the same effect on the semi-conductor as the p-n junction.

The electrons knocked off the atoms of the semi-conductor by the light pass this time into the electrolyte, rather than into another piece of semi-conductor. The effect is rather like what happens at one terminal of a battery. If another electrode is placed in the electrolyte, current will flow through a completed circuit outside the cell, from semi-conductor to electrochemical cell: to generate a

SCIENCE is edited by Tom Wilkie

current just shine light on the semi-conductor.

Photoelectrochemical cells could also produce chemical fuels. The passage of an electric current through a water-based electrolyte causes chemical reactions at one of the electrodes, producing hydrogen. This can be burnt or stored for later use.

The chemical cells are also cheaper than photo-voltaic devices. The semi-conductor electrode does not need the hi-tech treatment used in making silicon solar cells. The problem is that the chemical reactions started by the semi-conductor can dissolve it. This is called photo-corrosion, a light-induced 'rusting which eats away at the semi-conductor and covers it with an electrically insulating layer. This drastically reduces the life-span of the cell, sometimes to the order of seconds. Moreover, the chemical cells are less efficient in turning light into electricity than the photo-voltaic ones.

In the early Eighties, chemists were so gloomy about the pros-pects for these cells that they were predicting efficiencies of about 10 per cent by the late Nineties. But in 1984, Nathan Lewis of Stanford University in California smashed the 10 per cent barrier by using electrolytes that did not contain any water. This beat the corrosion problem but at a price: no water must be let into the system. Later, Lewis was able to hoist the efficiency of his cells to 15 per cent in water-based electrolytes by coating his semi-conductor, made from gallium arsenide, with an ultra-thin film of expensive osmium.

Now Stuart Licht has gone one better. He has used a special combination of semi-conductor (this time cadmium selenide, which is cheaper than gallium arsenide and which reacts to light differently) and a water-based electrolyte. This enables the cell to produce its maximum operating efficiency – a new high at almost 17 per cent – over days instead of seconds.

Apart from being much cheaper to make than a solid-state solar cell. Licht's new cell does something that no solid-state cell can do. It generates a comparatively high voltage - 1.2 volts (about the same as a conventional torch battery), compared to only 0.7 volts from a silicon solar cell. "There is no reason why we shouldn't get even higher voltages in the future, which will lead to efficiencies that easily rival those from solid-state devices," he says. Because photoelectrochemical cells, unlike photo-voltaic devices, can also store solar energy, which neither contributes to global warming nor world pollution, large-scale solar power generation could one day compete with nuclear power and fossil fuels.

Solar cell that works nights

A liquid solar cell designed in Israel has a built-in storage electrode that delivers power when the sun disappears.

> > ALKALINE SULPHIDE

STORAGE

VESSE

ELECTROLYTE

GLASS

DISCHARGIN

SEMICONDUCTOR

LEGHT

CHEMICAL ENERGY

MEMBRANE

ELECTRICAL ENERGY

By DAWN STOVER Drawings by Bob Lange

for the biggest problems with solar energy is its intermittent nature," says Dr. Stuart Licht, a chemistry professor at Clark University in Worcester, Mass. "It's not useful to a normal household."

While at the Weizmann Institute of Science in Rehovot, Israel, Licht and a group of researchers came up with a solution: a device that captures and stores solar energy. It discharges electricity in the dark.

Shortly after liquid solar cells containing conductive chemical baths were invented in the late 1970s, the Weizmann team suggested these cells could incorporate storage batteries. "We already had an electrochemical system," says Licht. "And a battery is also an electrochemical system."

Other solar researchers, trained in

Here's how Licht's cell-battery combo converts solar energy to electrical energy: A lone crystal of cadmium selenide telluride, a semiconductor, serves as a photoelectrode. It's immersed in a solution of aqueous polysulphide, an electrolyte. A cobalt sulphide counterelectrode, also immersed in the bath, is wired to the photoelectrode. Light hitting the photoelectrode excites electrons, which then jump from the electrolyte. They travel from the photoelectrode to the counterelectrode, powering an electrical device placed along the wire connecting the two electrodes. Upon reaching the counterelectrode, the electrons return to the electrolyte, completing the circuit.

STORAGE

MEMBRANE

In Licht's device solar energy also drives a chemical reaction to stockpile chemical energy. While the sun is shin-

solid-state physics, hadn't figured out how to prevent light-induced rusting. "I approached the problem purely as a chemist," Licht says. Instead of looking for protective coatings, he sought chemically compatible materials that would react in constructive ways circumventing more destructive pathways. ing some electrons are diverted from the main circuit down a second wire to a tin-sulphide storage electrode. There the electrons split the tin sulphide molecules, leaving tin on the electrode and releasing sulphide into an alkaline sulphide solution. When the light becomes too dim and electrons stop arriving at the storage electrode, the tin and sulphide recombine, releasing electrons that rejoin the main circuit and deliver power.

METAL COUNTERELECTRODE

METAL STORAGE ELECTRODE

The cell-battery system's overall efficiency is 11.3 percent, slightly better than a photovoltaic cell combined with an external battery.

Licht is now experimenting with inexpensive thin-film photoelectrodes. If its efficiency can be improved, a thinfilm system could provide round-theclock energy for remote areas.

SCIENCE AND TECHNOLOGY

Solar cells Mehr Licht

CAMBRIDGE, MASSACHUSETTS

SOLAR cells are fair-weather friends. The conventional sort, known as solid-state photovoltaic cells, can heat and light a house, but only while the sun shines. An external storage battery can ensure a supply of power on overcast days, but it defeats the object of solar cells. They are supposed to make electricity cheaply.

Another, less familiar system promises to make electricity from the sun even when it is not shining. This is the liquid solar cell. Like its solid-state cousin, it uses semiconductor material that is sensitive to light. Instead of being combined with other solid materials, the semiconductor is immersed in an electricity-conducting chemical bath. This forms a "photoelectrode". Sharing its bath, and attached to the photoelectrode by an external wire, is a second, counter-electrode. When light hits the photoelectrode, reactions at its surface remove electrons from the bath. The electrons move along the wire to the counter-electrode. This motion can be used to power an electrical device, or "load", along the way.

When they reach the counter-electrode, the electrons return to the chemical bath, thus regenerating it. (Depending on the materials used, the electrons may instead move from the counter-electrode to the photoelectrode; and the bath may be a gel rather than a liquid.) Since a storage battery also consists of electrodes immersed in electrochemical solutions, it should be fairly simple to incorporate a battery into a liquid solar cell—thus giving continuous power.

Liquid solar cells have not yet come into their own. First, they do not yet turn sunlight into electricity nearly as efficiently as solid-state cells do. Second, the same chemical reactions that make them work also dissolve them. And, it is hard to find to find a storage battery that is chemically compatible with them.

According to Dr Stuart Licht, who is now at the Massachusetts Institute of Technology, the problem was that nobody really understood the liquid solar cell. Hundreds of studies examined what happens in and on the semiconductor; nobody paid much attention to the chemicals in the bath. During some experimental work at the Weizmann Institute of Science at Rehovot in Israel, Dr Licht identified 15 chemicals in a typical electrochemical bath and worked

out how each one did its job. He spotted two chemical processes that limited the conversion efficiency of the cells (that is, the amount of power coming out when a certain amount of sunlight goes in).

This knowledge let him and his colleagues make some improvements to one promising type of liquid solar cell. In their version, the photoelectrode is a single crystal of cadmium selenide telluride, the counter-electrode is cobalt sulphide and the solution is an aqueous polysulphide. The conversion efficiency of the new polysulphide cell is almost 13%—nearly double the old version's best performance. With improved performance comes another bonus: a hundred-fold reduction in corrosion.

A conversion efficiency of 13% is good for a liquid solar cell, but it is only half the maximum achieved by a solid-state device while the sun shines. Fortunately, Dr Licht and his team have also found a type of storage battery that works well with their liquid solar cell. They use a tin-sulphide electrode in an alkaline-sulphide solution, separated from the rest of the cell by a permeable membrane. A wire from the "storage" electrode joins the main circuit between the photoelectrode and the load. When the sun shines, some of the electrons go down the wire to the storage electrode instead of along the main circuit and through the load. Those electrons split the tin sulphide molecules, leaving tin on the electrode and releasing sulphide into solution.

When the incoming light dims and electrons no longer arrive at the storage electrode, the tin and sulphide spontaneously recombine, releasing electrons that were captured before. Unable to flow back to the photoelectrode, the electrons rejoin the main circuit and flow through the load to the counter electrode. Averaging over day and night, Dr Licht's solar cell with a builtin storage electrode yields a conversion efficiency of 11.3%. This beats the record for solid-state systems with external batteries. Also, it needs no electronic switching or computer control to link the battery and cell. The cell simply stores energy and releases it spontaneously when it is needed. Despite fluctuating amounts of sunlight, the power provided is almost constant.

Similar cells can produce fuels or chemical products instead of electricity. For example, electrons escaping from the storage electrode split water into oxygen and hydro-

gen gas, a clean fuel that can be bubbled off. For continuous supply, add more water.

Dr Licht is the first to point out that problems remain. The photoelectrode in his cell is a single crystal. Systems that use photoelectrodes made of thin films are markedly cheaper because they are easier to make, and more durable, but also less efficient. There are already signs that what he has learnt about the chemistry of such cells will help. Dr Licht has raised the conversion efficiency of one thin-film system from 4% to 6% (when illuminated) and extended its lifetime from months to years. Although liquid solar cells are still, for the most part, creatures of the laboratory, the closer they are examined the more promising they look.