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Transcriptomic Biomarkers to 
Discriminate Bacterial from 
Nonbacterial Infection in Adults 
Hospitalized with Respiratory 
Illness
Soumyaroop Bhattacharya   1, Alex F. Rosenberg2, Derick R. Peterson   3, Katherine Grzesik3, 
Andrea M. Baran3, John M. Ashton4, Steven R. Gill4, Anthony M. Corbett   3, Jeanne Holden-
Wiltse3, David J. Topham5,6, Edward E. Walsh7, Thomas J. Mariani1 & Ann R. Falsey7

Lower respiratory tract infection (LRTI) commonly causes hospitalization in adults. Because bacterial 
diagnostic tests are not accurate, antibiotics are frequently prescribed. Peripheral blood gene 
expression to identify subjects with bacterial infection is a promising strategy. We evaluated whole 
blood profiling using RNASeq to discriminate infectious agents in adults with microbiologically defined 
LRTI. Hospitalized adults with LRTI symptoms were recruited. Clinical data and blood was collected, 
and comprehensive microbiologic testing performed. Gene expression was measured using RNASeq 
and qPCR. Genes discriminatory for bacterial infection were identified using the Bonferroni-corrected 
Wilcoxon test. Constrained logistic models to predict bacterial infection were fit using screened 
LASSO. We enrolled 94 subjects who were microbiologically classified; 53 as “non-bacterial” and 41 
as “bacterial”. RNAseq and qPCR confirmed significant differences in mean expression for 10 genes 
previously identified as discriminatory for bacterial LRTI. A novel dimension reduction strategy selected 
three pathways (lymphocyte, α-linoleic acid metabolism, IGF regulation) including eleven genes as 
optimal markers for discriminating bacterial infection (naïve AUC = 0.94; nested CV-AUC = 0.86). Using 
these genes, we constructed a classifier for bacterial LRTI with 90% (79% CV) sensitivity and 83% 
(76% CV) specificity. This novel, pathway-based gene set displays promise as a method to distinguish 
bacterial from nonbacterial LRTI.

Acute respiratory infections (ARI) occur commonly throughout life, accounting for substantial morbidity and 
mortality in adults1. In most cases the precise microbial etiology is unknown and antibiotics are administered 
empirically in illness requiring hospitalization2, 3. Although sensitive molecular diagnostics such as polymerase 
chain reaction (PCR) allow clinicians to rapidly and accurately diagnose a wide variety of respiratory viruses, 
their impact on management and antibiotic prescription has been modest primarily due to concern about bac-
terial co-infection4–6. Such concerns are not unfounded as approximately 30% of hospitalized adults with viral 
LRTI have evidence of concomitant bacterial infection7. The study of bacterial lung infection has been hampered 
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by insensitive tests for invasive disease and difficulty interpreting sputum cultures. Blood cultures are positive in 
only 6–10% of pneumonia cases and sputum is often contaminated with upper airway flora8. Clinical parameters 
such as fever, purulent sputum, white blood cell count and radiographic patterns provide insufficient precision 
to reliably distinguish viral from bacterial infections9. Thus, “ruling out” bacterial infection is extremely difficult, 
resulting in a default position of prescribing antibiotics to most patients hospitalized with LRTI. This results in 
significant antibiotic overuse, with resultant adverse effects and increased costs. Recently, serum biomarkers such 
as procalcitonin have shown some promise as a supplement to clinical judgment in assessing patients with LRTI 
but a need for more accurate tests remains10.

Gene expression profiling of peripheral blood mononuclear cells (PBMCs) or whole blood represents a power-
ful new approach for analysis of host responses during infection11, 12. Preliminary studies indicate viruses and bac-
teria trigger specific host transcriptional patterns, yielding unique “bio-signatures” that discriminate viral from 
bacterial infection13–16. Gene array analysis on extracted RNA from small volumes of blood from young children 
with febrile illnesses can differentiate infection with bacteria from viruses or virus plus bacteria, and also between 
Gram-positive and Gram-negative bacterial infection14. In a recent collaboration with Suarez, we identified ten 
classifier genes in adults hospitalized with LRTI that discriminated between bacterial and viral infection15. Eight 
of the ten were interferon (IFN) related genes that were over expressed in viral infection and absent in bacterial 
infection. The goal of the present study was to prospectively validate these, and discover additional classifier genes 
useful for discriminating bacterial from viral LRTI in hospitalized adults.

Methods
Population.  Adults 21 years or older admitted to Rochester General Hospital (RGH), Rochester, New York, 
with diagnoses or symptoms compatible with acute LRTI from January through June 2013 using the same crite-
ria as Suarez15. Admission logs were screened daily for patients with diagnoses of acute exacerbation of chronic 
obstructive pulmonary disease (AECOPD), bronchitis, asthma, influenza, viral syndrome, respiratory failure and 
congestive heart failure with infection, pneumonia or symptoms of wheezing, dyspnea, cough, sputum produc-
tion, nasal congestion, sore throat, hoarseness. Patients were enrolled within 24 hours of admission and demo-
graphic, clinical and laboratory information collected. Exclusion criteria included antibiotic treatment before 
admission, immunosuppression, cavitary lung disease, and witnessed aspiration. The University of Rochester and 
RGH institutional review boards approved the study and written informed consent was obtained from subjects 
or authorized representatives. All study procedures were performed in accordance with the institutional policies 
and guidelines and regulations pertaining to research involving human subjects.

Microbiologic Methods.  Nose and throat swabs (NTS), sputum, urine, and blood samples obtained 
at admission for bacterial and viral detection were processed at RGH clinical laboratories, as described7, 15. 
Briefly, single blood cultures positive for organisms consistent with skin flora (coagulase negative staphylococ-
cus, Corynebacterium, alpha hemolytic streptococci, Propionibacterium acnes) were considered contaminants. 
Sputum cultures were considered positive if ≥2+ of a pathogenic bacterium grew from an adequate sample 
using standard criteria. Urine was assayed for Streptococcus pneumoniae antigen using Binax NOW (Binax, Inc, 
Scarborough, ME). NTS and sputum were tested using the real time multiplex PCR (FilmArray Respiratory 
Panel, Idaho Technologies, Inc, Salt Lake City, UT) for detection of 15 viruses and 3 atypical bacteria. Subjects 
were only included in the analysis who had a microbiologic diagnosis and had adequate diagnostic testing. Illness 
definitions are listed in Table 1.

Molecular Methods.  Approximately 12 ml of whole blood was collected in Tempus™ Blood RNA Tube at 
enrollment. Following centrifugation, RNA was isolated from the pellet using the Tempus Spin RNA Isolation Kit. 
For 10 subjects blood was collected in CPT tubes and RNA isolated from spin-purified PBMCs using the RNeasy 
mini kit. Total RNA was processed for globin reduction using GLOBINclear Human Kit.

For quantitative PCR, cDNA was synthesized from 250 ng RNA using iScript cDNA synthesis kit and quanti-
tative PCR performed as described16 using noncommercial assays, Supplemental Table 1 (http://pga.mgh.harvard.
edu/primerbank). Difference in gene expression was tested by Wilcoxon Rank test (p < 0.05).

For RNAseq, cDNA libraries were generated using 200 ng of globin-reduced total RNA from each sample. 
Library construction was performed using the TruSeq Stranded mRNA library kit (Illumina, San Diego, CA). 
cDNA quantity was determined with the Qubit Flourometer (Life Technologies, Grand Island, NY) and quality 
assessed using the Agilent Bioanalyzer 2100 (Santa Clara, CA). Libraries were sequenced (single end reads) on the 
Illumina HiSeq 2500 (Illumina, San Diego, CA) to generate 20 million reads/sample.

Reads were aligned using the TopHat algorithm and expression values summarized using HTSeq17, 18. Raw 
counts were normalized using Conditional Median normalization. Differences in expression between bacterial 
and non-bacterial infected subjects for each gene were assessed by Wilcoxon rank test at an FDR q < 0.05.

Statistical Methods.  LASSO-penalized logistic regression was used to select pathway-based genetic pre-
dictors of bacterial infection (Supplemental Table 2). Model parameters were selected via cross-validation (CV), 
and the model’s predictive ability was assessed by a nested cross-validated (NCV) estimate of the area under 
the ROC curve (AUC). Briefly, genes were univariately screened, and those with a nominal Wilcoxon p < 0.10 
were assigned to 1330 known canonical pathways, as defined in the Molecular Signature Database (MSigDB) of 
Broad Institute19. The first principal component (PC1) of the genes in each pathway was derived, and genes with 
loadings close to 0 were removed. Pathways were subjected to an additional univariate Wilcoxon screen with 
significance level selected by CV. LASSO was then applied to these pathway PC1s to obtain a logistic model with 
pathway predictors.

http://pga.mgh.harvard.edu/primerbank
http://pga.mgh.harvard.edu/primerbank
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Clinical variables were dichotomized for robustness and ease of interpretation, univariately screened using 
nominal α = 0.05, and all-subsets selection was used to build a clinical-only logistic regression model with the 
number of variables selected via CV.

Data Availability.  DbGAP accession code : phs001248.v1.p1

Results
Demographics and Illness Characteristics.  Two hundred and thirteen patients were enrolled; 100 had 
definitive microbiologic diagnoses and 94 generated transcriptomic data passing quality control metrics. Clinical 
characteristics of these 94 subjects are shown in Table 2. Mean age was 61 years, 55% were female and 78% were 
Caucasian. The majority (98%) had at least one chronic medical condition, 7% required intensive care and none 
died. Clinical diagnoses included asthma exacerbation (n = 17), bronchitis (n = 25), AECOPD (n = 21), pneu-
monia (n = 23) and bacteremia (n = 8). For molecular analyses, 41 subjects were considered “bacterial” infection 
(27 bacterial only and 14 mixed viral/bacterial) and 53 subjects were classified “non-bacterial” infection (viral 
infection alone). A wide range of pathogens were detected (Supplemental Table 3) with influenza A the most 
common virus and Streptococcus pneumoniae the most common bacteria documented.

Transcriptomic Data Quality.  Six of the 100 samples were excluded based on poor RNA or sequence quality 
(read count/mapped read numbers) or if they were outliers in unsupervised cluster analysis, leaving 94 samples for 
analysis. On average 38 ± 5.6 million reads were generated from each of the cDNA libraries using globin-reduced, 
unfractionated whole blood RNA, with a mapping rate of 89.8 ± 2.8% indicating high quality sequence data. 
Genomic coverage averaged 66.1 ± 6.5% of the human transcriptome (Supplemental Figures S1A, S1B)  
indicating appropriate diversity of transcript sampling. Of 25,559 mapped genes, 2,440 genes with zero counts 
across all subjects were excluded. In addition, 7,438 genes with normalized counts of <3 for >75% subjects were 
excluded leaving 15,681 genes for analysis (Supplemental Figure S1C). RNA concentration was similar for blood 
collected in CPT and Tempus tubes (Supplemental Figure S1D).

Replication of Array-Based Predictors.  The expression of ten marker genes, previously identified by 
Suarez15, were assessed using RNA-Seq and qPCR for the ability to distinguish bacterial from non-bacterial 
illness. In the transcriptomic data, 8 of the 10 genes demonstrated significant differences between groups using 
Wilcoxon Rank test at a False Discovery Rate (FDR) or q < 0.05 (Fig. 1A). By qPCR all ten showed significant dif-
ference between bacterial and non-bacterial groups by Wilcoxon Rank test at a nominal p-value < 0.05 (Fig. 1B). 
Of note, increased expression of all 10 genes is associated with non-bacterial infection, with most belonging to the 
interferon family (Fig. 1C). Gene Set Enrichment Analysis (GSEA)20 using those ten genes as a gene set provided 
high enrichment scores (ES) from seven of those genes (IFI27, RSAD2, IFI44, IFIT3, OASL, OAS2, and IFIT2) in 
the leading edge of the plot indicating these genes are relatively informative for distinguishing groups.

Novel Markers for Bacterial Infection.  In addition to validating these previously identified markers for 
bacterial infection15, we sought to identify novel gene sets with the greatest potential for accurate classification. 
Using the Wilcoxon rank test with FDR q < 0.05, we identified 141 genes that are differentially expressed between 
subjects with bacterial versus non-bacterial infections (displayed in Figs. 2A and B). In contrast to the predictive 
markers replicated above, most of these 141 genes have higher expression in most subjects with bacterial infec-
tion. Notably, reduced expression of these 141 genes was observed in patients with a clinical diagnosis of asthma 
and bronchitis, whereas patients with pneumonia and bacteremia tended to have increased expression of these 
genes, with AECOPD presenting a mixed pattern. A subset of nine genes was selected for molecular validation by 

Microbiologic Classification

Virus infection alone NTS or sputum sample positive for any virus by one of the following: 
RT-PCR [all viruses], and all tests for bacteria were negative.

Bacterial infection alone

Negative viral diagnostic tests and any of the following: (1) positive 
blood culture meeting criteria for a pathogen, (2) positive culture 
for a respiratory pathogen from an adequate sputum sample, 
(3) a positive urinary antigen test for Streptococcus pneumoniae 
or Legionella pneumophila, or (4) positive PCR for Mycoplasma 
pneumoniae, Chlamydophila pneumoniae or Bordetella pertussis.

Viral-Bacterial Infection Meets definition for bacterial infection and viral infection

Adequate Microbiologic Assessment

Subjects with fever were required to have blood cultures prior to 
antibiotics and those with productive cough were required to have an 
adequate sputum sample obtained within 24 hours of admission and 
≤6 hours after administration of antibiotics. If these criteria were not 
met subjects could not be considered bacterial negative.

Analysis Groups

Bacterial Subjects with bacterial infection alone and those with mixed 
bacterial - viral infection

Non-bacterial Viral infection alone

Table 1.   Microbiologic Classification Criteria.

http://3
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qPCR, based on their magnitude of difference or biological relevance (Supplemental Figure S2A). We validated 
significant differences in expression for 8 of the 9 genes (Supplemental Figure S2B).

Ingenuity Pathway Analysis (IPA) was used to define the biology represented by genes differentially expressed 
between nonbacterial vs. bacterial infections (Supplemental Figures S3A, S3B and S3C). For this we analyzed 
various differentially expressed gene sets, based upon q-value thresholds; from q < 0.01 (n = 1434) to q < 0.0005 
(n = 304). Not surprisingly, this analysis predicted inhibition of numerous viral infection and replication related 
biological functions (Figure S3A). Pathways analysis also implicated virus related pathways (interferon signa-
ling, activation of IRF), as well as non-viral pathways (Figure S3B). Of note, inhibition of integrin signaling, 
activation of RhoGDI signaling and involvement (no direction predicted) of the IGF1 signaling pathways were 
also predicted. Our analyses also sought to predict regulatory molecules that may drive differential expression 
distinguishing bacterial from non-bacterial infection subjects (Figure S3C). This implicated multiple regulators 
of interferon signaling (IRF3, IRF9, STAT1/2). The most significant regulator identified was CNOT7, reported to 
be responsible for dampening interferon signaling through STAT121.

Assessment of Gene Expression Markers for Bacterial LRTI.  We identified a set of genes whose 
expression may be useful for classification of bacterial versus non-bacterial infections. We leveraged biological 
priors as a means of identifying the most robust predictors since1 expression changes at the individual gene level 
alone may not be sufficient to identify biologically meaningful data and2 there exist substantial statistical advan-
tages to dimension reduction strategies in the analysis of genome-wide data. We used a curated list of genes20 to 
partition our transcriptomic data into 1330 biologically-relevant gene sets, or pathways. Gene expression data 
from the genes in each pathway were reduced to a single derived pathway variable as described in the Statistical 
Methods. Cross-validation simultaneously selected a LASSO penalty parameter and a Bonferroni-corrected sig-
nificance level of 0.05 for screening pathways, at which 43 pathways were univariately associated with infec-
tion status. Of those, LASSO-penalized logistic regression retained 3 pathways consisting of a total of 11 genes 
(Fig. 3A) providing the greatest predictive value for classifying subjects as bacterial or non-bacterial. Differential 
expression was confirmed for 6 genes by qPCR (Fig. 3B). A Heat map demonstrating the differential expression 
of 11 selected genes between subjects with bacterial, mixed viral bacterial and viral infection alone is shown in 
Fig. 4. Pathway and gene names, pathway odds ratios (OR) based upon LASSO and constrained gene OR are 
presented in Fig. 5A. Sensitivity-specificity analysis indicated models using these gene sets provided a naive area 
under the receiver-operator curve (AUC) of 0.94, and a conservative, fully nested, cross-validated (NCV) AUC 
of 0.86.

All N = 94

Bacterial (Bacterial 
alone and Mixed 
Bacterial Viral) N = 41

Non Bacterial 
(Viral alone) N = 53

Fisher’s Exact 
or t-test P value

Demographics

Age, mean ± SD 61 ± 18 67 ± 18 57 ± 17 0.01

Male Sex, No. (%) 42 (45) 21 (51) 21 (40) 0.30

White Race 73 (78) 35 (85) 38 (72) 0.14

Underlying Conditions

COPD, No. (%) 30 (32) 17 (41) 13 (25) 0.12

CHF, No. (%) 23 (24) 10 (24) 13 (25) 1

Diabetes, No. (%) 27 (29) 13 (32) 14 (26) 0.65

Symptoms

Nasal Congestion, No. (%) 50 (53) 14 (34) 36 (68) 0.002

Cough, No. (%) 85 (90) 34 (83) 51 (96) 0.04

Sputum, No. (%) 66 (70) 29 (71) 37 (70) 1

Dyspnea, No. (%) 81 (86) 34 (83) 47 (89) 0.55

Rigors, No. (%) 30 (32) 12 (29) 18 (34) 0.66

Physical Findings

Wheezing, No. (%) 66 (70) 25 (61) 41 (77) 0.11

Rales, No. (%) 29 (31) 15 (37) 14 (26) 0.37

Temperature (°C) 37.8 ± 1.0 37.8 ± 0.9 37.8 ± 1.0 0.93

Systolic Blood Pressure, mean ± SD 112 ± 21 111 ± 25 113 ± 18 0.73

Oxygen Saturation, mean ± SD 90.0 ± 6.0 88.4 ± 7.1 91.2 ± 4.7 0.03

Laboratory Data

Infiltrate on Chest Radiograph 27 (29) 21 (52) 6 (11) <0.0001

White blood cell count, mean ± SD 10.7 ± 5.6 13.7 ± 6.8 8.5 ± 2.9 <0.0001

% bands in peripheral blood, 
mean ± SD 3.1 ± 5.6 5.2 ± 6.9 0.7 ± 1.9 0.002

Blood urea nitrogen, mean ± SD 19 ± 12 23 ± 15 16 ± 8 0.005

Table 2.   Subject Demographic and Clinical Characteristics.

http://S2A
http://S2B
http://S3A, S3B and S3C
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Figure 1.  Replication of Array-Based Predictors. (A) Violin plots of RNASeq-based expression data for each 
of the 10 genes. Q-values for differential expression between bacterial and non-bacterial groups are indicated 
beneath the gene names. Horizontal lines indicate group medians. (B) Quantitative reverse transcriptase-
polymerase chain reaction (qPCR)- based expression data for each of the 10 genes. P-values for differential 
expression between bacterial and non-bacterial groups are indicated beneath the gene names. Horizontal lines 
indicate group medians. (C) Gene set enrichment analysis plot for these 10 genes. Seven genes (vertical black 
lines) are contained in the leading edge of the enrichment plot.
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Clinical variables were also tested for the ability to distinguish subjects with bacterial versus non-bacterial 
infection using the screened all subsets selection method described in the Statistical Methods. Cross-validation 
chose a 4-predictor model consisting of nasal congestion, infiltrates on chest radiograph, blood urea nitrogen 
levels and white blood cell count (Fig. 5B). This clinical model had a surprisingly robust naïve AUC of 0.833 and 
an NCV-AUC of 0.813 (Fig. 5C). We also attempted to optimize biomarker selection by combining clinical and 
gene expression data. All such models failed to select any clinical variables.

Finally, we fit a model using only the 10 genes previously identified by Suarez15. Using LASSO-penalized 
logistic regression, we identified a stable 5-gene model with an NCV-AUC of 0.811. Therefore, our novel 
pathway-based biomarkers out-performed both the set of previously implicated genes and clinical variables 
(Fig. 5C).

To summarize the different analyses, a flow chart of the analysis of the different gene sets derived from RNA 
sequencing data from the 94 study subjects is provided in Fig. 6. We first assessed expression of 10 genes identified 
by Suarez et al. to be differentially expressed comparing bacterial to viral infections. We next identified the 141 
most differentially-expressed genes, as defined by statistical differences in bacterial vs. non-bacterial infection. 
Separately, we used a pathway-based approach to develop a novel gene expression classifier for discriminating 
bacterial vs. non-bacterial infection. An additional 9 genes of biologic interest were selected from the 141gene 
set after considering the 10 Suarez genes. Validation of RNAseq-based expression estimates for selected genes 
was attempted by qPCR. Finally, performance of the novel 3 pathway-based 11 gene classifier was assessed in our 
cohort.

A Molecular Classifier for Bacterial LRTI.  To classify subjects as bacterial or non-bacterial, it is necessary 
to threshold a molecular predictor. We estimated the sensitivity and specificity associated with several candidate 
thresholds for the nominal predicted probability of a bacterial infection (Supplemental Table 4). We targeted a 
threshold with sensitivity ≥ specificity ≥ 70%, corresponding with weighting errors among the bacterial subjects 

Figure 2.  Global Expression Patterns in LRTI. (A) Shown is a heat map for the 141 genes (rows) demonstrating 
significantly different expression levels between bacterial and non-bacterial groups. Each column represents 
an individual subject, and subjects were grouped based upon microbiological diagnosis, using independent 
hierarchical clustering (Euclidean distance with average linkage). (B) The same data are presented, grouped by 
clinical diagnosis. The pink semi-circle denotes the patient with influenza A and a single blood culture positive 
for S. aureus.

http://4
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50% higher than those among the non-bacterial subjects. The optimal threshold was estimated to be about 0.40, 
with a naive sensitivity of 90% and specificity of 83%, and a NCV sensitivity of 79% and specificity of 76%.

A particularly challenging group of subjects are those with mixed viral bacterial infections. Of the 14 subjects 
with mixed infection 12 (naïve sensitivity, 85.7%) were correctly classified by our predictors which was similar 
to the bacterial infection only group, 27/29 (93.1%). Using a threshold of 0.36 for the clinical predictors and 0.42 
for the Suarez genes to calculate naïve sensitivity we found that 12 of 14 (85.7%) were correctly categorized by 
the clinical variables, whereas, 8 of 14 (57.1%) were correctly classified by the model we built using the 10 genes 

Figure 3.  Expression of Genes Predictive for Bacterial Involvement in LRTI. (A) Violin plots of RNASeq-
based expression data for 11 selected genes, from 3 canonical pathways, that provide predictive value for 
identifying bacterial involvement in lower respiratory track infections. Q-values for differential expression 
between bacterial and non-bacterial groups are indicated beneath the gene names. Horizontal lines indicate 
group medians. (B) Quantitative reverse transcriptase-polymerase chain reaction (qPCR)- based expression 
data for each of the 11 genes. P-values for differential expression between bacterial and non-bacterial groups are 
indicated beneath the gene names. Horizontal lines indicate group medians.
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selected by Suarez et al. There was one subject misclassified as non-bacterial by all 3 models, while all other mis-
classified subjects differed by model.

Clinical information on the naively misclassified subjects is provided in Supplemental Table 5. Of note, one 
subject with influenza A and one of two sets of blood cultures positive for methicillin resistant Staphylococcus 
aureus (MRSA) was classified as non-bacterial (indicated by the pink semi-circle on the heat map in Figs. 2A 
and B, and in Supplemental Figure S4 (showing only subjects with Staphylococcus aureus infections). Additional 
clinical information about this subject is provided in Figure S4.

Discussion
Respiratory infections are common reasons for hospitalization in adults and although broad-spectrum antibiotics 
are frequently prescribed, this practice is now being questioned2, 22. While progress has been made in viral detec-
tion, the inaccessibility of the primary site of bacterial infection (the bronchi and lung) makes accurate bacterial 
diagnostics difficult to develop. Because blood samples can be obtained in most patients, identifying circulating 
biomarkers reflecting pathologic processes in the lower airways is highly desirable6, 23, 24. A variety of protein 
biomarkers including C-reactive protein and pro-calcitonin (PCT) have been used singly and in combination to 
discriminate bacterial from viral infection24–26. While PCT has been used with some success to guide antibiotic 
treatment for LRTI, threshold levels have never been validated with microbiology10, 27.

As an alternative to serum protein biomarkers, gene expression analyses using peripheral blood have been 
used in cancer, cardiovascular, autoimmune and infectious diseases to study disease pathogenesis, severity and 
recently as a diagnostic tool11, 16, 28–30. Microarrays have been used to determine unique host response expression 
“signatures” for tuberculosis, malaria, bacterial and viral infections13–16, 31, 32. These signatures have been used to 
differentiate viral from bacterial disease infection, symptomatic from asymptomatic viral infections and to iden-
tify specific bacterial and viral pathogens29, 33.

Several studies have evaluated gene expression by microarray for diagnostic purposes in adults and children 
with ARI and febrile illness. Interestingly, despite similar accuracy of predictive gene sets (AUC ranging from 
78–94%), there has been little overlap in predictive genes identified13–16, 33–37. Diverse populations and control 
groups studied plus alternate analytic tools used likely explain the different predictive genes identified. Developing 
a model with the goal of “ruling out bacterial infection” such as ours might be expected to yield different results 
than those with a goal of identifying influenza regardless of bacterial status34, 35, 38. Recently, Tsalik used micro 
array to assess gene expression in whole blood to discriminate bacterial from viral infection or non-infectious 
cardiopulmonary illness in 273 subjects with community onset ARI16. These investigators used sparse logistic 
regression to define 130 predictor genes in a model with an accuracy of 87% to discriminate clinically adjudicated 
bacterial, viral, and non-infectious illness.

One of the goals of our study was to prospectively validate the 10 predictor genes identified by Suarez in an 
independent cohort of hospitalized adults15. Despite the relatively small sample size, we confirmed differential 
expression of all 10 genes. In addition, we included additional discovery efforts since RNAseq has not previ-
ously been used for diagnostic purposes in LRTI. We discovered a number of new differentially expressed genes. 
Interestingly, in contrast to prior studies which detected genes increased in non-bacterial LRTI, most of our 
novel genes show increased expression in bacterial LRTI. Of note, subjects were enrolled at the same community 
hospital and infection status determined using the same criteria as in the Suarez study. In addition to technical 
differences in microarray and RNAseq methods, predicting bacterial vs. non-bacterial rather than distinguish-
ing viral, bacterial and mixed viral/bacterial infections may have reduced the prominence of interferon related 
genes identified in the current study. Regardless, our methods for interpretation of differentially expressed genes 
(Figure S3) clearly predict the involvement of viral responses and activation of interferon signaling.

The use of clinical variables, even in combination with laboratory variables, has not successfully discriminated 
bacterial from viral infection with sufficient precision to be useful9. Although the predictive accuracy of our 
clinical variable model was almost as high as our model using gene expression data, this is likely explained by 
over representation of “extreme phenotypes”. To avoid misclassification, patients with bacteremic pneumonia and 

Figure 4.  Shown is a heat map for the 10 predictive genes identified by pathway analysis as predictive of 
bacterial infection (rows) demonstrating differential expression in the 3 groups, bacterial, mixed viral bacterial 
and viral alone. Each column represents an individual subject.

http://5
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virally induced asthma exacerbations represented a substantial proportion of the subjects in our study. Although 
necessary when developing predictor gene sets, these groups are not the most troublesome groups for clinicians. 
Non-bacteremic pneumonia and AECOPD are frequently associated with diagnostic uncertainty and present 
more difficult antibiotic management decisions. Given the difficulty in establishing microbiologic diagnoses, 
studies with larger samples sizes are needed to evaluate if predictive genes identified in the current study can 
be applied to these populations. In addition, it may be useful to evaluate pathway-based gene sets with selected 
clinical variables to achieve optimal diagnostic accuracy (although this did not improve prediction in the current 
study).

In order for gene expression analysis to move from bench to clinic, a limited number of optimal predictive 
genes must be identified for which rapid PCR can be performed, and thresholds must be chosen to categorize 
patients as bacterial or non-bacterial. The molecular classifier we report here displays good sensitivity and spec-
ificity for predicting bacterial involvement in LRTI, but there is clearly room for improvement otherwise such 
predictors will not be adopted for clinical use. Unlike other groups, we undertook the challenging task of clas-
sifying mixed viral bacterial infections as bacterial. Since many clinicians currently use PCR testing to diagnose 
viral infections but prescribe antibiotics despite positive results because of fear of bacterial co-infections the 
ability to correctly categorize this group is important4, 7. No test will be perfect and sacrificing specificity to opti-
mize sensitivity may be the most viable approach since the current default position is to prescribe antibiotics 

Figure 5.  Comparison of Predictive Performance for Gene Expression and Clinical Biomarkers. (A) LASSO-
penalized logistic regression retained 3 pathways consisting of a total of 11 genes providing the greatest 
predictive value for classifying subjects as bacterial or non-bacterial. *LASSO Pathway OR are odds ratios per 
SD of the hard-thresholded 1st PC of the nominally significant genes within the pathway. ***Constrained Gene 
OR = exp (Gene Loading * log (LASSO Pathway OR)/SDPathway) = (LASSO Pathway OR)(Gene Loading/
(SD of Pathway)). (B) Cross-validation chose a 4-predictor model consisting of nasal congestion, infiltrates on 
chest radiograph, blood urea nitrogen levels and white blood cell count. (C) Area Under the ROC Curve (AUC) 
characteristics are shown for fully nested cross-validated estimates using the “pathway”-selected 11 gene set, the 
“array”-selected 10 gene set, and the 4 clinical variables. These data indicate that our pathway-based 11-gene 
predictor outperforms both the clinical and array-based gene models.
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to hospitalized patients with respiratory infection. One patient in our study with influenza A pneumonia and a 
single blood culture positive for MRSA was classified as non-bacterial using our pathway-based gene model. In 
clinical practice blood isolates of S. aureus are almost never dismissed as a contaminant although the organism 
is a skin commensal. Interestingly, the gene expression pattern of this patient is markedly different than other 
patients with S. aureus bacteremia raising the possibility that the blood culture was a contaminant (Fig. 2B and 
Supplemental Figure S4, Clinical data provided in supplement).

Because the current work was designed as a validation and discovery study, the primary limitation is the 
small sample size. Thus, we chose to use all available data to build the best final model, rather than setting aside a 
substantial portion as a validation data set. However, cross-validation was used to avoid over-fitting the training 
data. Moreover, in a rigorous and computationally intensive move, an outer loop of nested cross-validation was 
used as an unbiased method to evaluate overall performance of the internally cross-validated model fitting pro-
cedure. Compared with data splitting, nested cross-validation results in better models and more stable estimates 
of performance, since every subject contributes to the performance estimates. The trade-off is that estimated per-
formance does not correspond directly to the final model but rather to an average of several models fit to different 
data subsamples. Additionally, a larger sample size would allow sub-analyses of various microbiologic and clinical 
syndromes such as AECOPD and pneumonia, which may yield different optimal predictive gene sets. We consid-
ered validating our results utilizing publicly available data from similar subjects; however, there are concerns that 
inherent differences in methodology (RNAseq vs. gene array) and differences in subject demographics, popula-
tion age, and rigor of microbiological classification may invalidate such comparisons. As additional similar data 
sets are added to the literature, meta-analysis might prove useful in identifying robust gene sets for discriminatory 
purposes. Finally, we did not include ill subjects with noninfectious conditions and thus we cannot conclude that 
our predictors are specific for bacterial infection. Although our predictors discriminate bacterial and nonbacterial 
illnesses this may reflect severity of illness rather than a bacterial specific signature. Strengths of the current study 
are the use of high throughput sequencing to classify bacterial and non-bacterial subjects, representing a novel 
unbiased diagnostic approach as well as inclusion of mixed viral bacterial infections in the predictive model.

In conclusion, this report adds to mounting evidence that gene expression analysis of peripheral blood can 
be a useful test to discriminate bacterial and nonbacterial respiratory illness in hospitalized adults. Additional 
prospective studies are needed to define optimal predictive genes, with or without clinical variables and serum 
biomarkers, to assist clinicians in limiting unnecessary antibiotics for respiratory infections.
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