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In a fixed-bed reactor the catalyst pellets are held in place and do not move
with respect to a fixed reference frame.

Material and energy balances are required for both the fluid, which occupies
the interstitial region between catalyst particles, and the catalyst particles, in
which the reactions occur.

The following figure presents several views of the fixed-bed reactor. The
species production rates in the bulk fluid are essentially zero. That is the
reason we are using a catalyst.
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Figure 7.1: Expanded views of a fixed-bed reactor.
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The physical picture

Essentially all reaction occurs within the catalyst particles. The fluid in contact
with the external surface of the catalyst pellet is denoted with subscript s.

When we need to discuss both fluid and pellet concentrations and
temperatures, we use a tilde on the variables within the catalyst pellet.
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The steps to consider

During any catalytic reaction the following steps occur:

1 transport of reactants and energy from the bulk fluid up to the catalyst pellet
exterior surface,

2 transport of reactants and energy from the external surface into the porous
pellet,

3 adsorption, chemical reaction, and desorption of products at the catalytic
sites,

4 transport of products from the catalyst interior to the external surface of the
pellet, and

5 transport of products into the bulk fluid.

The coupling of transport processes with chemical reaction can lead to
concentration and temperature gradients within the pellet, between the surface
and the bulk, or both.
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Some terminology and rate limiting steps

Usually one or at most two of the five steps are rate limiting and act to
influence the overall rate of reaction in the pellet. The other steps are
inherently faster than the slow step(s) and can accommodate any change in
the rate of the slow step.

The system is intraparticle transport controlled if step 2 is the slow process
(sometimes referred to as diffusion limited).

For kinetic or reaction control, step 3 is the slowest process.

Finally, if step 1 is the slowest process, the reaction is said to be externally
transport controlled.
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Effective catalyst properties

In this chapter, we model the system on the scale of Figure 7.1 C. The
problem is solved for one pellet by averaging the microscopic processes that
occur on the scale of level D over the volume of the pellet or over a solid
surface volume element.

This procedure requires an effective diffusion coefficient, Dj , to be identified
that contains information about the physical diffusion process and pore
structure.
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Catalyst Properties

To make a catalytic process commercially viable, the number of sites per unit
reactor volume should be such that the rate of product formation is on the
order of 1 mol/L·hour [12].

In the case of metal catalysts, the metal is generally dispersed onto a
high-area oxide such as alumina. Metal oxides also can be dispersed on a
second carrier oxide such as vanadia supported on titania, or it can be made
into a high-area oxide.

These carrier oxides can have surface areas ranging from 0.05 m2/g to
greater than 100 m2/g.

The carrier oxides generally are pressed into shapes or extruded into pellets.
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Catalyst Properties

The following shapes are frequently used in applications:

20–100 µm diameter spheres for fluidized-bed reactors
0.3–0.7 cm diameter spheres for fixed-bed reactors
0.3–1.3 cm diameter cylinders with a length-to-diameter ratio of 3–4
up to 2.5 cm diameter hollow cylinders or rings.

Table 7.1 lists some of the important commercial catalysts and their uses [7].
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Catalyst Reaction

Metals (e.g., Ni, Pd, Pt, as powders C C bond hydrogenation, e.g.,
or on supports) or metal oxides olefin + H2 -→ paraffin
(e.g., Cr2O3)

Metals (e.g., Cu, Ni, Pt) C O bond hydrogenation, e.g.,
acetone + H2 -→ isopropanol

Metal (e.g., Pd, Pt) Complete oxidation of hydrocarbons,
oxidation of CO

Fe (supported and promoted with 3H2 + N2 -→ 2NH3
alkali metals)

Ni CO + 3H2 -→ CH4 + H2O (methanation)

Fe or Co (supported and promoted CO + H2 -→ paraffins + olefins + H2O
with alkali metals) + CO2 (+ other oxygen-containing organic

compounds) (Fischer-Tropsch reaction)

Cu (supported on ZnO, with other CO + 2H2 -→ CH3OH
components, e.g., Al2O3)

Re + Pt (supported on η-Al2O3 or Paraffin dehydrogenation, isomerization
γ-Al2O3 promoted with chloride) and dehydrocyclization
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Catalyst Reaction

Solid acids (e.g., SiO2-Al2O3, zeolites) Paraffin cracking and isomerization

γ-Al2O3 Alcohol -→ olefin + H2O

Pd supported on acidic zeolite Paraffin hydrocracking

Metal-oxide-supported complexes of Olefin polymerization,
Cr, Ti or Zr e.g., ethylene -→ polyethylene

Metal-oxide-supported oxides of Olefin metathesis,
W or Re e.g., 2 propylene → ethylene + butene

Ag(on inert support, promoted by Ethylene + 1/2 O2 → ethylene oxide
alkali metals) (with CO2 + H2O)

V2O5 or Pt 2 SO2 + O2 → 2 SO3

V2O5 (on metal oxide support) Naphthalene + 9/2O2 → phthalic anhydride
+ 2CO2 +2H2O

Bismuth molybdate Propylene + 1/2O2 → acrolein

Mixed oxides of Fe and Mo CH3OH + O2 → formaldehyde
(with CO2 + H2O)

Fe3O4 or metal sulfides H2O + CO → H2 + CO2

Table 7.1: Industrial reactions over heterogeneous catalysts. This material is used by
permission of John Wiley & Sons, Inc., Copyright c©1992 [7].
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Physical properties

Figure 7.1 D of shows a schematic representation of the cross section of a
single pellet.

The solid density is denoted ρs.

The pellet volume consists of both void and solid. The pellet void fraction (or
porosity) is denoted by ε and

ε = ρpVg

in which ρp is the effective particle or pellet density and Vg is the pore volume.

The pore structure is a strong function of the preparation method, and
catalysts can have pore volumes (Vg) ranging from 0.1–1 cm3/g pellet.

11 / 160



Pore properties

The pores can be the same size or there can be a bimodal distribution with
pores of two different sizes, a large size to facilitate transport and a small
size to contain the active catalyst sites.

Pore sizes can be as small as molecular dimensions (several Ångströms) or as
large as several millimeters.

Total catalyst area is generally determined using a physically adsorbed
species, such as N2. The procedure was developed in the 1930s by Brunauer,
Emmett and and Teller [5], and the isotherm they developed is referred to as
the BET isotherm.
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Figure: Expanded views of a fixed-bed reactor.
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Effective Diffusivity

Catalyst ε τ
100–110µm powder packed into a tube 0.416 1.56
pelletized Cr2O3 supported on Al2O3 0.22 2.5
pelletized boehmite alumina 0.34 2.7
Girdler G-58 Pd on alumina 0.39 2.8
Haldor-Topsøe MeOH synthesis catalyst 0.43 3.3
0.5% Pd on alumina 0.59 3.9
1.0% Pd on alumina 0.5 7.5
pelletized Ag/8.5% Ca alloy 0.3 6.0
pelletized Ag 0.3 10.0

Table 7.2: Porosity and tortuosity factors for diffusion in catalysts.
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The General Balances in the Catalyst Particle

In this section we consider the mass and energy balances that arise with diffusion
in the solid catalyst particle when considered at the scale of Figure 7.1 C.
Consider the volume element depicted in the figure

e N j

E cj
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Balances

Assume a fixed laboratory coordinate system in which the velocities are defined
and let v j be the velocity of species j giving rise to molar flux N j

N j = cjv j , j = 1,2, . . . ,ns

Let E be the total energy within the volume element and e be the flux of total
energy through the bounding surface due to all mechanisms of transport. The
conservation of mass and energy for the volume element implies

∂cj

∂t
= −∇ ·N j + Rj , j = 1,2, . . . ,ns (7.10)

∂E
∂t
= −∇ · e

in which Rj accounts for the production of species j due to chemical reaction.
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Fluxes

Next we consider the fluxes. Since we are considering the diffusion of mass in a
stationary, solid particle, we assume the mass flux is well approximated by

N j = −Dj∇cj , j = 1,2, . . . ,ns

in which Dj is an effective diffusivity for species j. We approximate the total
energy flux by

e = −k∇T +
∑

j

N jH j

This expression accounts for the transfer of heat by conduction, in which k is the
effective thermal conductivity of the solid, and transport of energy due to the
mass diffusion.
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Steady state

In this chapter, we are concerned mostly with the steady state. Setting the time
derivatives to zero and assuming constant thermodynamic properties produces

0 = Dj∇2cj + Rj , j = 1,2, . . . ,ns (7.14)

0 = k∇2T −
∑

i

∆HRiri (7.15)

In multiple-reaction, noniosthermal problems, we must solve these equations
numerically, so the assumption of constant transport and thermodynamic
properties is driven by the lack of data, and not analytical convenience.
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Single Reaction in an Isothermal Particle

We start with the simplest cases and steadily remove restrictions and increase
the generality. We consider in this section a single reaction taking place in an
isothermal particle.

First case: the spherical particle, first-order reaction, without external
mass-transfer resistance.

Next we consider other catalyst shapes, then other reaction orders, and then
other kinetic expressions such as the Hougen-Watson kinetics of Chapter 5.

We end the section by considering the effects of finite external mass transfer.
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First-Order Reaction in a Spherical Particle

A
k
-→ B, r = kcA

0 = Dj∇2cj + Rj , j = 1,2, . . . ,ns

Substituting the production rate into the mass balance, expressing the equation in
spherical coordinates, and assuming pellet symmetry in θ and φ coordinates gives

DA
1
r2

d
dr

(
r2 dcA

dr

)
− kcA = 0 (7.16)

in which DA is the effective diffusivity in the pellet for species A.
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Units of rate constant

As written here, the first-order rate constant k has units of inverse time.
Be aware that the units for a heterogeneous reaction rate constant are sometimes
expressed per mass or per area of catalyst.
In these cases, the reaction rate expression includes the conversion factors,
catalyst density or catalyst area, as illustrated in Example 7.1.
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Boundary Conditions

We require two boundary conditions for Equation 7.16.

In this section we assume the concentration at the outer boundary of the
pellet, cAs, is known

The symmetry of the spherical pellet implies the vanishing of the derivative at
the center of the pellet.

Therefore the two boundary conditions for Equation 7.16 are

cA = cAs , r = R

dcA

dr
= 0 r = 0
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Dimensionless form I

At this point we can obtain better insight by converting the problem into
dimensionless form. Equation 7.16 has two dimensional quantities, length and
concentration. We might naturally choose the sphere radius R as the length scale,
but we will find that a better choice is to use the pellet’s volume-to-surface ratio.
For the sphere, this characteristic length is

a = Vp

Sp
=

4
3πR3

4πR2
= R

3

The only concentration appearing in the problem is the surface concentration in
the boundary condition, so we use that quantity to nondimensionalize the
concentration

r = r
a
, c = cA

cAs

Dividing through by the various dimensional quantities produces

1

r2

d
dr

(
r2 dc

dr

)
− Φ2c = 0 (7.17)
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Dimensionless form II

c = 1 r = 3

dc
dr
= 0 r = 0

in which Φ is given by

Φ =
√

ka2

DA

reaction rate
diffusion rate

Thiele modulus (7.18)
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Thiele Modulus — Φ

The single dimensionless group appearing in the model is referred to as the Thiele
number or Thiele modulus in recognition of Thiele’s pioneering contribution in
this area [11].1 The Thiele modulus quantifies the ratio of the reaction rate to the
diffusion rate in the pellet.

1In his original paper, Thiele used the term modulus to emphasize that this then unnamed
dimensionless group was positive. Later when Thiele’s name was assigned to this dimensionless
group, the term modulus was retained. Thiele number would seem a better choice, but the term Thiele
modulus has become entrenched.
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Solving the model

We now wish to solve Equation 7.17 with the given boundary conditions. Because
the reaction is first order, the model is linear and we can derive an analytical
solution.
It is often convenient in spherical coordinates to consider the variable
transformation

c(r) = u(r)
r

(7.20)

Substituting this relation into Equation 7.17 provides a simpler differential
equation for u(r),

d2u

dr2 − Φ
2u = 0 (7.21)

with the transformed boundary conditions

u = 3 r = 3

u = 0 r = 0

The boundary condition u = 0 at r = 0 ensures that c is finite at the center of the
pellet.
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General solution – hyperbolic functions I

The solution to Equation 7.21 is

u(r) = c1 coshΦr + c2 sinhΦr (7.22)

This solution is analogous to the sine and cosine solutions if one replaces the
negative sign with a positive sign in Equation 7.21. These functions are shown in
Figure 7.3.
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General solution – hyperbolic functions II
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Figure 7.3: Hyperbolic trigonometric functions sinh, cosh and tanh.

Some of the properties of the hyperbolic functions are

cosh r = er + e−r

2
d cosh r

dr
= sinh r

sinh r = er − e−r

2
d sinh r

dr
= cosh r

tanh r = sinh r
cosh r
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Evaluating the unknown constants

The constants c1 and c2 are determined by the boundary conditions. Substituting
Equation 7.22 into the boundary condition at r = 0 gives c1 = 0, and applying the
boundary condition at r = 3 gives c2 = 3/ sinh3Φ.
Substituting these results into Equations 7.22 and 7.20 gives the solution to the
model

c(r) = 3
r
sinhΦr
sinh3Φ

(7.23)
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Every picture tells a story

Figure 7.4 displays this solution for various values of the Thiele modulus.
Note for small values of Thiele modulus, the reaction rate is small compared to
the diffusion rate, and the pellet concentration becomes nearly uniform. For large
values of Thiele modulus, the reaction rate is large compared to the diffusion rate,
and the reactant is converted to product before it can penetrate very far into the
pellet.
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Figure 7.4: Dimensionless concentration versus dimensionless radial position for different
values of the Thiele modulus.
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Pellet total production rate

We now calculate the pellet’s overall production rate given this concentration
profile. We can perform this calculation in two ways.
The first and more direct method is to integrate the local production rate over the
pellet volume. The second method is to use the fact that, at steady state, the rate
of consumption of reactant within the pellet is equal to the rate at which material
fluxes through the pellet’s exterior surface.
The two expressions are

RAp =
1

Vp

∫ R

0
RA(r)4πr2dr volume integral (7.24)

RAp = −
Sp

Vp
DA

dcA

dr

∣∣∣∣
r=R

surface flux
(assumes steady state)

(7.25)

in which the local production rate is given by RA(r) = −kcA(r).
We use the direct method here and leave the other method as an exercise.

32 / 160



Some integration

Substituting the local production rate into Equation 7.24 and converting the
integral to dimensionless radius gives

RAp = −
kcAs

9

∫ 3

0
c(r)r2dr

Substituting the concentration profile, Equation 7.23, and changing the variable of
integration to x = Φr gives

RAp = −
kcAs

3Φ2 sinh3Φ

∫ 3Φ

0
x sinh xdx

The integral can be found in a table or derived by integration by parts to yield
finally

RAp = −kcAs
1
Φ

[
1

tanh3Φ
− 1

3Φ

]
(7.26)
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Effectiveness factor η

It is instructive to compare this actual pellet production rate to the rate in the
absence of diffusional resistance. If the diffusion were arbitrarily fast, the
concentration everywhere in the pellet would be equal to the surface
concentration, corresponding to the limit Φ = 0. The pellet rate for this limiting
case is simply

RAs = −kcAs (7.27)

We define the effectiveness factor, η, to be the ratio of these two rates

η ≡ RAp

RAs
, effectiveness factor (7.28)
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Effectiveness factor is the pellet production rate

The effectiveness factor is a dimensionless pellet production rate that measures
how effectively the catalyst is being used.
For η near unity, the entire volume of the pellet is reacting at the same high rate
because the reactant is able to diffuse quickly through the pellet.
For η near zero, the pellet reacts at a low rate. The reactant is unable to penetrate
significantly into the interior of the pellet and the reaction rate is small in a large
portion of the pellet volume.
The pellet’s diffusional resistance is large and this resistance lowers the overall
reaction rate.
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Effectiveness factor for our problem

We can substitute Equations 7.26 and 7.27 into the definition of effectiveness
factor to obtain for the first-order reaction in the spherical pellet

η = 1
Φ

[
1

tanh3Φ
− 1

3Φ

]
(7.29)

Figures 7.5 and 7.6 display the effectiveness factor versus Thiele modulus
relationship given in Equation 7.29.
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The raw picture
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Figure 7.5: Effectiveness factor versus Thiele modulus for a first-order reaction in a sphere.
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The usual plot
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Figure 7.6: Effectiveness factor versus Thiele modulus for a first-order reaction in a sphere
(log-log scale).
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The log-log scale in Figure 7.6 is particularly useful, and we see the two
asymptotic limits of Equation 7.29.
At small Φ, η ≈ 1, and at large Φ, η ≈ 1/Φ.
Figure 7.6 shows that the asymptote η = 1/Φ is an excellent approximation for
the spherical pellet for Φ ≥ 10.
For large values of the Thiele modulus, the rate of reaction is much greater than
the rate of diffusion, the effectiveness factor is much less than unity, and we say
the pellet is diffusion limited.
Conversely, when the diffusion rate is much larger than the reaction rate, the
effectiveness factor is near unity, and we say the pellet is reaction limited.
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Example — Using the Thiele modulus and effectiveness factor

Example 7.1

The first-order, irreversible reaction (A -→ B) takes place in a 0.3 cm radius
spherical catalyst pellet at T = 450 K.
At 0.7 atm partial pressure of A, the pellet’s production rate is −2.5× 10−5 mol/(g
s).
Determine the production rate at the same temperature in a 0.15 cm radius
spherical pellet.
The pellet density is ρp = 0.85 g/cm3. The effective diffusivity of A in the pellet is
DA = 0.007 cm2/s. �
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Solution

We can use the production rate and pellet parameters for the 0.3 cm pellet to find
the value for the rate constant k, and then compute the Thiele modulus,
effectiveness factor and production rate for the smaller pellet.
We have three unknowns, k,Φ, η, and the following three equations

RAp = −ηkcAs (7.30)

Φ =
√

ka2

DA
(7.31)

η = 1
Φ

[
1

tanh3Φ
− 1

3Φ

]
(7.32)
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The production rate is given in the problem statement.
Solving Equation 7.31 for k, and substituting that result and Equation 7.32
into 7.30, give one equation in the unknown Φ

Φ
[

1
tanh3Φ

− 1
3Φ

]
= −RApa2

DAcAs
(7.33)

The surface concentration and pellet production rates are given by

cAs =
0.7 atm(

82.06 cm3 atm
mol K

)
(450 K)

= 1.90× 10−5mol/cm3

RAp =
(
−2.5× 10−5 mol

g s

)(
0.85

g
cm3

)
= −2.125

mol
cm3 s
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Substituting these values into Equation 7.33 gives

Φ
[

1
tanh3Φ

− 1
3Φ

]
= 1.60

This equation can be solved numerically yielding the Thiele modulus

Φ = 1.93

Using this result, Equation 7.31 gives the rate constant

k = 2.61 s−1

The smaller pellet is half the radius of the larger pellet, so the Thiele modulus is
half as large or Φ = 0.964, which gives η = 0.685.
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The production rate is therefore

RAp = −0.685
(

2.6s−1
)(

1.90× 10−5mol/cm3
)
= −3.38× 10−5 mol

cm3 s

We see that decreasing the pellet size increases the production rate by almost
60%. Notice that this type of increase is possible only when the pellet is in the
diffusion-limited regime.
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Other Catalyst Shapes: Cylinders and Slabs

Here we consider the cylinder and slab geometries in addition to the sphere
covered in the previous section.
To have a simple analytical solution, we must neglect the end effects.
We therefore consider in addition to the sphere of radius Rs, the semi-infinite
cylinder of radius Rc , and the semi-infinite slab of thickness 2L, depicted in
Figure 7.7.
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Rs

Rc

L

a = Rc/2

a = L

a = Rs/3

Figure 7.7: Characteristic length a for sphere, semi-infinite cylinder and semi-infinite slab.
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We can summarize the reaction-diffusion mass balance for these three geometries
by

DA
1
rq

d
dr

(
rq dcA

dr

)
− kcA = 0 (7.34)

in which
q = 2 sphere

q = 1 cylinder

q = 0 slab
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The associated boundary conditions are

cA = cAs


r = Rs sphere
r = Rc cylinder
r = L slab

dcA

dr
= 0 r = 0 all geometries

The characteristic length a is again best defined as the volume-to-surface ratio,
which gives for these geometries

a = Rs

3
sphere

a = Rc

2
cylinder

a = L slab
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The dimensionless form of Equation 7.34 is

1
rq

d
dr

(
rq dc

dr

)
− Φ2c = 0 (7.35)

c = 1 r = q + 1

dc
dr
= 0 r = 0

in which the boundary conditions for all three geometries can be compactly
expressed in terms of q.
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The effectiveness factor for the different geometries can be evaluated using the
integral and flux approaches, Equations 7.24–7.25, which lead to the two
expressions

η = 1
(q + 1)q

∫ q+1

0
crqdr (7.36)

η = 1
Φ2

dc
dr

∣∣∣∣
r=q+1

(7.37)
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Effectiveness factor — Analytical

We have already solved Equations 7.35 and 7.36 (or 7.37) for the sphere, q = 2.
Analytical solutions for the slab and cylinder geometries also can be derived. See
Exercise 7.1 for the slab geometry. The results are summarized in the following
table.

Sphere η =
1
Φ

[
1

tanh3Φ
− 1

3Φ

]
(7.38)

Cylinder η =
1
Φ

I1(2Φ)
I0(2Φ)

(7.39)

Slab η =
tanhΦ
Φ

(7.40)
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Effectiveness factor — Graphical

The effectiveness factors versus Thiele modulus for the three geometries are
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Use the right Φ and ignore geometry!

Although the functional forms listed in the table appear quite different, we see in
the figure that these solutions are quite similar.
The effectiveness factor for the slab is largest, the cylinder is intermediate, and
the sphere is the smallest at all values of Thiele modulus.
The three curves have identical small Φ and large Φ asymptotes.
The maximum difference between the effectiveness factors of the sphere and the
slab η is about 16%, and occurs at Φ = 1.6. For Φ < 0.5 and Φ > 7, the difference
between all three effectiveness factors is less than 5%.
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Other Reaction Orders

For reactions other than first order, the reaction-diffusion equation is nonlinear
and numerical solution is required.
We will see, however, that many of the conclusions from the analysis of the
first-order reaction case still apply for other reaction orders.
We consider nth-order, irreversible reaction kinetics

A
k
-→ B, r = kcn

A

The reaction-diffusion equation for this case is

DA
1
rq

d
dr

(
rq dcA

dr

)
− kcn

A = 0 (7.41)
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Thiele modulus for different reaction orders

The results for various reaction orders have a common asymptote if we instead
define

Φ =
√

n + 1
2

kcn−1
As a2

DA

Thiele modulus
nth-order reaction

(7.42)

1
rq

d
dr

(
rq dc

dr

)
− 2

n + 1
Φ2cn = 0

c = 1 r = q + 1

dc
dr
= 0 r = 0

η = 1
(q + 1)q

∫ q+1

0
cnrqdr

η = n + 1
2

1
Φ2

dc
dr

∣∣∣∣
r=q+1
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Reaction order greater than one

Figure 7.9 shows the effect of reaction order for n ≥ 1 in a spherical pellet.
As the reaction order increases, the effectiveness factor decreases.
Notice that the definition of Thiele modulus in Equation 7.42 has achieved the
desired goal of giving all reaction orders a common asymptote at high values of Φ.
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Reaction order greater than one
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Figure 7.9: Effectiveness factor versus Thiele modulus in a spherical pellet; reaction orders
greater than unity.
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Reaction order less than one

Figure 7.10 shows the effectiveness factor versus Thiele modulus for reaction
orders less than unity.
Notice the discontinuity in slope of the effectiveness factor versus Thiele modulus
that occurs when the order is less than unity.
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Figure 7.10: Effectiveness factor versus Thiele modulus in a spherical pellet; reaction orders
less than unity.
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Reaction order less than one I

Recall from the discussion in Chapter 4 that if the reaction order is less than unity
in a batch reactor, the concentration of A reaches zero in finite time.
In the reaction-diffusion problem in the pellet, the same kinetic effect causes the
discontinuity in η versus Φ.
For large values of Thiele modulus, the diffusion is slow compared to reaction,
and the A concentration reaches zero at some nonzero radius inside the pellet.
For orders less than unity, an inner region of the pellet has identically zero A
concentration.
Figure 7.11 shows the reactant concentration versus radius for the zero-order
reaction case in a sphere at various values of Thiele modulus.
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Reaction order less than one II
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Reaction order less than one III

Figure 7.11: Dimensionless concentration versus radius for zero-order reaction (n = 0) in a
spherical pellet (q = 2); for large Φ the inner region of the pellet has zero A concentration.
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Use the right Φ and ignore reaction order!

Using the Thiele modulus

Φ =
√

n + 1
2

kcn−1
As a2

DA

allows us to approximate all orders with the analytical result derived for first order.
The approximation is fairly accurate and we don’t have to solve the problem
numerically.
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Hougen-Watson Kinetics

Given the discussion in Section 5.6 of adsorption and reactions on catalyst
surfaces, it is reasonable to expect our best catalyst rate expressions may be of
the Hougen-Watson form.
Consider the following reaction and rate expression

A -→ products r = kcm
KAcA

1+ KAcA

This expression arises when gas-phase A adsorbs onto the catalyst surface and
the reaction is first order in the adsorbed A concentration.

64 / 160



If we consider the slab catalyst geometry, the mass balance is

DA
d2cA

dr2
− kcm

KAcA

1+ KAcA
= 0

and the boundary conditions are

cA = cAs r = L

dcA

dr
= 0 r = 0

We would like to study the effectiveness factor for these kinetics.
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First we define dimensionless concentration and length as before to arrive at the
dimensionless reaction-diffusion model

d2c

dr2 − Φ
2 c

1+φc
= 0 (7.43)

c = 1 r = 1

dc
dr
= 0 r = 0 (7.44)

in which we now have two dimensionless groups

Φ =
√

kcmKAa2

DA
, φ = KAcAs (7.45)
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We use the tilde to indicate Φ is a good first guess for a Thiele modulus for this
problem, but we will find a better candidate subsequently.
The new dimensionless group φ represents a dimensionless adsorption constant.
The effectiveness factor is calculated from

η = RAp

RAs
= −(Sp/Vp)DA dcA/dr|r=a

−kcmKAcAs/(1+ KAcAs)

which becomes upon definition of the dimensionless quantities

η = 1+φ
Φ2

dc
dr

∣∣∣∣
r=1

(7.46)
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Rescaling the Thiele modulus

Now we wish to define a Thiele modulus so that η has a common asymptote at
large Φ for all values of φ.
This goal was accomplished for the nth-order reaction as shown in Figures 7.9
and 7.10 by including the factor (n + 1)/2 in the definition of Φ given in
Equation 7.42.
The text shows how to do this analysis, which was developed independently by
four chemical engineers.
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What did ChE professors work on in the 1960s?

This idea appears to have been discovered independently by three chemical
engineers in 1965.
To quote from Aris [2, p. 113]

This is the essential idea in three papers published independently in March,
May and June of 1965; see Bischoff [4], Aris [1] and Petersen [10]. A more
limited form was given as early as 1958 by Stewart in Bird, Stewart and
Lightfoot [3, p. 338].
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Rescaling the Thiele modulus

The rescaling is accomplished by

Φ =
(

φ
1+φ

)
1√

2 (φ− ln(1+φ)) Φ

So we have the following two dimensionless groups for this problem

Φ =
(

φ
1+φ

)√
kcmKAa2

2DA (φ− ln(1+φ)) , φ = KAcAs (7.52)

The payoff for this analysis is shown in Figures 7.13 and 7.14.
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The first attempt
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Figure 7.13: Effectiveness factor versus an inappropriate Thiele modulus in a slab;
Hougen-Watson kinetics.
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The right rescaling
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Figure 7.14: Effectiveness factor versus appropriate Thiele modulus in a slab;
Hougen-Watson kinetics.
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Use the right Φ and ignore the reaction form!

If we use our first guess for the Thiele modulus, Equation 7.45, we obtain
Figure 7.13 in which the various values of φ have different asymptotes.
Using the Thiele modulus defined in Equation 7.52, we obtain the results in
Figure 7.14. Figure 7.14 displays things more clearly.
Again we see that as long as we choose an appropriate Thiele modulus, we can
approximate the effectiveness factor for all values of φ with the first-order
reaction.
The largest approximation error occurs near Φ = 1, and if Φ > 2 or Φ < 0.2, the
approximation error is negligible.
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External Mass Transfer

If the mass-transfer rate from the bulk fluid to the exterior of the pellet is not
high, then the boundary condition

cA(r = R) = cAf

is not satisfied.

0−R R

r

0−R R

r

cAf

cAs

cAf

cA
cA
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Mass transfer boundary condition

To obtain a simple model of the external mass transfer, we replace the boundary
condition above with a flux boundary condition

DA
dcA

dr
= km

(
cAf − cA

)
, r = R (7.53)

in which km is the external mass-transfer coefficient.
If we multiply Equation 7.53 by a/cAf DA, we obtain the dimensionless boundary
condition

dc
dr
= B (1− c) , r = 3 (7.54)

in which

B = kma
DA

(7.55)

is the Biot number or dimensionless mass-transfer coefficient.
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Mass transfer model

Summarizing, for finite external mass transfer, the dimensionless model and
boundary conditions are

1

r2

d
dr

(
r2 dc

dr

)
− Φ2c = 0 (7.56)

dc
dr
= B (1− c) r = 3

dc
dr
= 0 r = 0
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Solution

The solution to the differential equation satisfying the center boundary condition
can be derived as in Section 7.4 to produce

c(r) = c2

r
sinhΦr

in which c2 is the remaining unknown constant. Evaluating this constant using the
external boundary condition gives

c(r) = 3
r

sinhΦr
sinh3Φ + (Φ cosh3Φ − (sinh3Φ)/3) /B

(7.57)
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Figure 7.16: Dimensionless concentration versus radius for different values of the Biot
number; first-order reaction in a spherical pellet with Φ = 1.
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Effectiveness Factor

The effectiveness factor can again be derived by integrating the local reaction rate
or computing the surface flux, and the result is

η = 1
Φ

[
1/ tanh3Φ − 1/(3Φ)

1+ Φ (1/ tanh3Φ − 1/(3Φ)) /B

]
(7.58)

in which

η = RAp

RAb

Notice we are comparing the pellet’s reaction rate to the rate that would be
achieved if the pellet reacted at the bulk fluid concentration rather than the pellet
exterior concentration as before.
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Figure 7.17: Effectiveness factor versus Thiele modulus for different values of the Biot
number; first-order reaction in a spherical pellet.
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Figure 7.17 shows the effect of the Biot number on the effectiveness factor or total
pellet reaction rate.
Notice that the slope of the log-log plot of η versus Φ has a slope of negative two
rather than negative one as in the case without external mass-transfer limitations
(B = ∞).
Figure 7.18 shows this effect in more detail.
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Figure 7.18: Asymptotic behavior of the effectiveness factor versus Thiele modulus;
first-order reaction in a spherical pellet.
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Making a sketch of η versus Φ

If B is small, the log-log plot corners with a slope of negative two at Φ =
√

B.
If B is large, the log-log plot first corners with a slope of negative one at Φ = 1,
then it corners again and decreases the slope to negative two at Φ =

√
B.

Both mechanisms of diffusional resistance, the diffusion within the pellet and the
mass transfer from the fluid to the pellet, show their effect on pellet reaction rate
by changing the slope of the effectiveness factor by negative one.
Given the value of the Biot number, one can easily sketch the straight line
asymptotes shown in Figure 7.18. Then, given the value of the Thiele modulus,
one can determine the approximate concentration profile, and whether internal
diffusion or external mass transfer or both limit the pellet reaction rate.
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Which mechanism controls?

The possible cases are summarized in the table

Biot number Thiele modulus Mechanism controlling
pellet reaction rate

B < 1 Φ < B reaction
B < Φ < 1 external mass transfer

1 < Φ both external mass transfer
and internal diffusion

1 < B Φ < 1 reaction
1 < Φ < B internal diffusion

B < Φ both internal diffusion and
external mass transfer

Table 7.4: The controlling mechanisms for pellet reaction rate given finite rates of internal
diffusion and external mass transfer.
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Observed versus Intrinsic Kinetic Parameters

We often need to determine a reaction order and rate constant for some
catalytic reaction of interest.

Assume the following nth-order reaction takes place in a catalyst particle

A -→ B, r1 = kcn
A

We call the values of k and n the intrinsic rate constant and reaction order to
distinguish them from what we may estimate from data.

The typical experiment is to change the value of cA in the bulk fluid, measure
the rate r1 as a function of cA, and then find the values of the parameters k
and n that best fit the measurements.
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Observed versus Intrinsic Kinetic Parameters

Here we show only that one should exercise caution with this estimation if we are
measuring the rates with a solid catalyst. The effects of reaction, diffusion and
external mass transfer may all manifest themselves in the measured rate.
We express the reaction rate as

r1 = ηkcn
Ab (7.59)

We also know that at steady state, the rate is equal to the flux of A into the
catalyst particle

r1 = kmA(cAb − cAs) =
DA

a
dcA

dr

∣∣∣∣
r=R

(7.60)

We now study what happens to our experiment under different rate-limiting steps.
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Reaction limited

First assume that both the external mass transfer and internal pellet diffusion are
fast compared to the reaction. Then η = 1, and we would estimate the intrinsic
parameters correctly in Equation 7.59

kob = k

nob = n

Everything goes according to plan when we are reaction limited.
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Diffusion limited

Next assume that the external mass transfer and reaction are fast, but the internal
diffusion is slow. In this case we have η = 1/Φ, and using the definition of Thiele
modulus and Equation 7.59

r1 = kobc(n+1)/2
As (7.61)

kob =
1
a

√
2

n + 1
DA

√
k (7.62)

nob = (n + 1)/2 (7.63)
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Diffusion limited

So we see two problems. The rate constant we estimate, kob, varies as the square
root of the intrinsic rate constant, k. The diffusion has affected the measured rate
of the reaction and disguised the rate constant.
We even get an incorrect reaction order: a first-order reaction appears half-order,
a second-order reaction appears first-order, and so on.

r1 = kobc(n+1)/2
As

kob =
1
a

√
2

n + 1
DA

√
k

nob = (n + 1)/2
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Diffusion limited

Also consider what happens if we vary the temperature and try to determine the
reaction’s activation energy.
Let the temperature dependence of the diffusivity, DA, be represented also in
Arrhenius form, with Ediff the activation energy of the diffusion coefficient.
Let Erxn be the intrinsic activation energy of the reaction. The observed activation
energy from Equation 7.62 is

Eob =
Ediff + Erxn

2

so both activation energies show up in our estimated activation energy.
Normally the temperature dependence of the diffusivity is much smaller than the
temperature dependence of the reaction, Ediff � Erxn, so we would estimate an
activation energy that is one-half the intrinsic value.
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Mass transfer limited

Finally, assume the reaction and diffusion are fast compared to the external mass
transfer. Then we have cAb � cAs and Equation 7.60 gives

r1 = kmAcAb

If we vary cAb and measure r1, we would find the mass transfer coefficient instead
of the rate constant, and a first-order reaction instead of the true reaction order

kob = kmA

nob = 1

Normally, mass-transfer coefficients also have fairly small temperature
dependence compared to reaction rates, so the observed activation energy would
be almost zero, independent of the true reaction’s activation energy.
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Moral to the story

Mass transfer and diffusion resistances disguise the reaction kinetics.
We can solve this problem in two ways. First, we can arrange the experiment so
that mass transfer and diffusion are fast and do not affect the estimates of the
kinetic parameters. How?
If this approach is impractical or too expensive, we can alternatively model the
effects of the mass transfer and diffusion, and estimate the parameters DA and
kmA simultaneously with k and n. We develop techniques in Chapter 9 to handle
this more complex estimation problem.
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Nonisothermal Particle Considerations

We now consider situations in which the catalyst particle is not isothermal.

Given an exothermic reaction, for example, if the particle’s thermal
conductivity is not large compared to the rate of heat release due to chemical
reaction, the temperature rises inside the particle.

We wish to explore the effects of this temperature rise on the catalyst
performance.
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Single, first-order reaction

We have already written the general mass and energy balances for the catalyst
particle in Section 7.3.

0 = Dj∇2cj + Rj , j = 1,2, . . . ,ns

0 = k∇2T −
∑

i

∆HRiri

Consider the single-reaction case, in which we have RA = −r and
Equations 7.14 and 7.15 reduce to

DA∇2cA = r

k∇2T = ∆HRr
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Reduce to one equation

We can eliminate the reaction term between the mass and energy balances to
produce

∇2T = ∆HRDA

k
∇2cA

which relates the conversion of the reactant to the rise (or fall) in temperature.

Because we have assumed constant properties, we can integrate this equation
twice to give the relationship between temperature and A concentration

T − Ts =
−∆HRDA

k
(cAs − cA) (7.64)
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Rate constant variation inside particle

We now consider a first-order reaction and assume the rate constant has an
Arrhenius form,

k(T ) = ks exp

[
−E

(
1
T
− 1

Ts

)]
in which Ts is the pellet exterior temperature, and we assume fast external mass
transfer.
Substituting Equation 7.64 into the rate constant expression gives

k(T ) = ks exp

[
E
Ts

(
1− Ts

Ts +∆HRDA(cA − cAs)/k

)]
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Dimensionless parameters α, β, γ

We can simplify matters by defining three dimensionless variables

γ = E
Ts
, β = −∆HRDAcAs

kTs
, Φ2 = k(Ts)

DA
a2

in which γ is a dimensionless activation energy, β is a dimensionless heat of
reaction, and Φ is the usual Thiele modulus. Again we use the tilde to indicate we
will find a better Thiele modulus subsequently.
With these variables, we can express the rate constant as

k(T ) = ks exp

[
γβ(1− c)

1+ β(1− c)

]
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Nonisothermal model — Weisz-Hicks problem

We then substitute the rate constant into the mass balance, and assume a
spherical particle to obtain the final dimensionless model

1

r2

d
dr

(
r2 dc

dr

)
= Φ2c exp

(
γβ(1− c)

1+ β(1− c)

)
dc
dr
= 0 r = 3

c = 1 r = 0 (7.65)

Equation 7.65 is sometimes called the Weisz-Hicks problem in honor of Weisz and
Hicks’s outstanding paper in which they computed accurate numerical solutions to
this problem [13].
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Effectiveness factor for nonisothermal problem

Given the solution to Equation 7.65, we can compute the effectiveness factor for
the nonisothermal pellet using the usual relationship

η = 1
Φ2

dc
dr

∣∣∣∣
r=3

If we perform the same asymptotic analysis of Section 7.4.4 on the Weisz-Hicks
problem, we find, however, that the appropriate Thiele modulus for this problem is

Φ = Φ/I(γ, β), I(γ, β) =
[

2
∫ 1

0
c exp

(
γβ(1− c)

1+ β(1− c)

)
dc

]1/2

(7.66)

The normalizing integral I(γ, β) can be expressed as a sum of exponential
integrals [2] or evaluated by quadrature.
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Figure 7.19: Effectiveness factor versus normalized Thiele modulus for a first-order reaction
in a nonisothermal spherical pellet.
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Note that Φ is well chosen in Equation 7.66 because the large Φ asymptotes
are the same for all values of γ and β.

The first interesting feature of Figure 7.19 is that the effectiveness factor is
greater than unity for some values of the parameters.

Notice that feature is more pronounced as we increase the exothermic heat of
reaction.

For the highly exothermic case, the pellet’s interior temperature is
significantly higher than the exterior temperature Ts. The rate constant inside
the pellet is therefore much larger than the value at the exterior, ks. This
leads to η greater than unity.
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A second striking feature of the nonisothermal pellet is that multiple steady
states are possible.

Consider the case Φ = 0.01, β = 0.4 and γ = 30 shown in Figure 7.19.

The effectiveness factor has three possible values for this case.

We show in the next two figures the solution to Equation 7.65 for this case.
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The concentration profile
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And the temperature profile
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MSS in nonisothermal pellet

The three temperature and concentration profiles correspond to an ignited
steady state (C), an extinguished steady state (A), and an unstable
intermediate steady state (B).

As we showed in Chapter 6, whether we achieve the ignited or extinguished
steady state in the pellet depends on how the reactor is started.

For realistic values of the catalyst thermal conductivity, however, the pellet
can often be considered isothermal and the energy balance can be
neglected [9].

Multiple steady-state solutions in the particle may still occur in practice,
however, if there is a large external heat transfer resistance.
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Multiple Reactions

As the next step up in complexity, we consider the case of multiple reactions.

Even numerical solution of some of these problems is challenging for two
reasons.

First, steep concentration profiles often occur for realistic parameter values,
and we wish to compute these profiles accurately. It is not unusual for species
concentrations to change by 10 orders of magnitude within the pellet for
realistic reaction and diffusion rates.

Second, we are solving boundary-value problems because the boundary
conditions are provided at the center and exterior surface of the pellet.

We use the collocation method, which is described in more detail in
Appendix A.
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Multiple reaction example — Catalytic converter

The next example involves five species, two reactions with Hougen-Watson
kinetics, and both diffusion and external mass-transfer limitations.

Consider the oxidation of CO and a representative volatile organic such as
propylene in a automobile catalytic converter containing spherical catalyst pellets
with particle radius 0.175 cm.
The particle is surrounded by a fluid at 1.0 atm pressure and 550 K containing 2%
CO, 3% O2 and 0.05% (500 ppm) C3H6. The reactions of interest are

CO+ 1/2O2 -→ CO2

C3H6 + 9/2O2 -→ 3CO2 + 3H2O

with rate expressions given by Oh et al. [8]

r1 =
k1cCOcO2

(1+ KCOcCO + KC3H6 cC3H6)2

r2 =
k2cC3H6 cO2

(1+ KCOcCO + KC3H6 cC3H6)2
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Catalytic converter

The rate constants and the adsorption constants are assumed to have Arrhenius
form.
The parameter values are given in Table 7.5 [8].
The pellet may be assumed to be isothermal.
Calculate the steady-state pellet concentration profiles of all reactants and
products.
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Data

Parameter Value Units Parameter Value Units

P 1.013× 105 N/m2 k10 7.07× 1019 mol/cm3· s

T 550 K k20 1.47× 1021 mol/cm3· s

R 0.175 cm KCO0 8.099× 106 cm3/mol

E1 13,108 K KC3H60 2.579× 108 cm3/mol

E2 15,109 K DCO 0.0487 cm2/s

ECO −409 K DO2 0.0469 cm2/s

EC3H6 191 K DC3H6 0.0487 cm2/s

cCOf 2.0 % kmCO 3.90 cm/s

cO2f 3.0 % kmO2 4.07 cm/s

cC3H6f 0.05 % kmC3H6 3.90 cm/s

Table 7.5: Kinetic and mass-transfer parameters for the catalytic converter example.
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Solution

We solve the steady-state mass balances for the three reactant species,

Dj
1
r2

d
dr

(
r2 dcj

dr

)
= −Rj

with the boundary conditions

dcj

dr
= 0 r = 0

Dj
dcj

dr
= kmj

(
cjf − cj

)
r = R

j = {CO,O2,C3H6}. The model is solved using the collocation method. The
reactant concentration profiles are shown in Figures 7.22 and 7.23.
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Figure 7.22: Concentration profiles of reactants; fluid concentration of O2 (×), CO (+), C3H6
(∗).
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Figure 7.23: Concentration profiles of reactants (log scale); fluid concentration of O2 (×), CO
(+), C3H6 (∗).
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Results

Notice that O2 is in excess and both CO and C3H6 reach very low values within the
pellet.
The log scale in Figure 7.23 shows that the concentrations of these reactants
change by seven orders of magnitude.
Obviously the consumption rate is large compared to the diffusion rate for these
species.
The external mass-transfer effect is noticeable, but not dramatic.
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Product Concentrations

The product concentrations could simply be calculated by solving their mass
balances along with those of the reactants.
Because we have only two reactions, however, the products concentrations are
also computable from the stoichiometry and the mass balances.
The text shows this step in detail.
The results of the calculation are shown in the next figure.
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Figure 7.24: Concentration profiles of the products; fluid concentration of CO2 (×), H2O (+).
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Product Profiles

Notice from Figure 7.24 that CO2 is the main product.
Notice also that the products flow out of the pellet, unlike the reactants, which are
flowing into the pellet.
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Fixed-Bed Reactor Design

Given our detailed understanding of the behavior of a single catalyst particle,
we now are prepared to pack a tube with a bed of these particles and solve
the fixed-bed reactor design problem.

In the fixed-bed reactor, we keep track of two phases. The fluid-phase
streams through the bed and transports the reactants and products through
the reactor.

The reaction-diffusion processes take place in the solid-phase catalyst
particles.

The two phases communicate to each other by exchanging mass and energy
at the catalyst particle exterior surfaces.

We have constructed a detailed understanding of all these events, and now we
assemble them together.
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Coupling the Catalyst and Fluid

We make the following assumptions:

1 Uniform catalyst pellet exterior. Particles are small compared to the length of
the reactor.

2 Plug flow in the bed, no radial profiles.

3 Neglect axial diffusion in the bed.

4 Steady state.
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Fluid phase

In the fluid phase, we track the molar flows of all species, the temperature and the
pressure.
We can no longer neglect the pressure drop in the tube because of the catalyst
bed. We use an empirical correlation to describe the pressure drop in a packed
tube, the well-known Ergun equation [6].

dNj

dV
= Rj (7.67)

QρCp
dT
dV
= −

∑
i

∆HRiri +
2
R

Uo(Ta − T )

dP
dV
= − (1− εB)

Dpε3
B

Q

A2
c

[
150

(1− εB)µf

Dp
+ 7

4
ρQ
Ac

]
The fluid-phase boundary conditions are provided by the known feed conditions at
the tube entrance

Nj = Njf , z = 0

T = Tf , z = 0

P = Pf , z = 0
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Catalyst particle

Inside the catalyst particle, we track the concentrations of all species and the
temperature.

Dj
1
r2

d
dr

(
r2 dc̃ j

dr

)
= −R̃j

k
1
r2

d
dr

(
r2 dT̃

dr

)
=
∑

i

∆HRi r̃ i

The boundary conditions are provided by the mass-transfer and heat-transfer rates
at the pellet exterior surface, and the zero slope conditions at the pellet center

dc̃ j

dr
= 0 r = 0

Dj
dc̃ j

dr
= kmj(cj − c̃ j) r = R

dT̃
dr
= 0 r = 0

k
dT̃
dr
= kT (T − T̃ ) r = R
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Coupling equations

Finally, we equate the production rate Rj experienced by the fluid phase to the
production rate inside the particles, which is where the reaction takes place.
Analogously, we equate the enthalpy change on reaction experienced by the fluid
phase to the enthalpy change on reaction taking place inside the particles.

Rj︸︷︷︸
rate j / vol

= − (1− εB)︸ ︷︷ ︸
vol cat / vol

Sp

Vp
Dj

dc̃ j

dr

∣∣∣∣∣
r=R︸ ︷︷ ︸

rate j / vol cat

∑
i

∆HRiri︸ ︷︷ ︸
rate heat / vol

= (1− εB)︸ ︷︷ ︸
vol cat / vol

Sp

Vp
k

dT̃
dr

∣∣∣∣∣
r=R︸ ︷︷ ︸

rate heat / vol cat

(7.77)
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Bed porosity, εB

We require the bed porosity (Not particle porosity!) to convert from the rate per
volume of particle to the rate per volume of reactor.
The bed porosity or void fraction, εB , is defined as the volume of voids per volume
of reactor.
The volume of catalyst per volume of reactor is therefore 1− εB .
This information can be presented in a number of equivalent ways. We can easily
measure the density of the pellet, ρp, and the density of the bed, ρB .
From the definition of bed porosity, we have the relation

ρB = (1− εB)ρp

or if we solve for the volume fraction of catalyst

1− εB = ρB/ρp
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In pictures

Rj

r̃ i

R̃j

ri

Mass

Rj = (1− εB)R̃jp

R̃jp = −
Sp

Vp
Dj

dc̃j

dr

∣∣∣∣∣
r=R

Energy∑
i

∆HRi ri = (1− εB)
∑
i

∆HRi r̃ ip

∑
i

∆HRi r̃ ip =
Sp

Vp
k

dT̃
dr

∣∣∣∣∣
r=R

Figure 7.25: Fixed-bed reactor volume element containing fluid and catalyst particles; the
equations show the coupling between the catalyst particle balances and the overall reactor
balances.
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Summary

Equations 7.67–7.77 provide the full packed-bed reactor model given our
assumptions.
We next examine several packed-bed reactor problems that can be solved without
solving this full set of equations.
Finally, we present an example that requires numerical solution of the full set of
equations.
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First-order, isothermal fixed-bed reactor

Use the rate data presented in Example 7.1 to find the fixed-bed reactor volume
and the catalyst mass needed to convert 97% of A. The feed to the reactor is pure
A at 1.5 atm at a rate of 12 mol/s. The 0.3 cm pellets are to be used, which leads
to a bed density ρB = 0.6 g/cm3. Assume the reactor operates isothermally at 450
K and that external mass-transfer limitations are negligible.
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Solution I

We solve the fixed-bed design equation

dNA

dV
= RA = −(1− εB)ηkcA

between the limits NAf and 0.03NAf , in which cA is the A concentration in the fluid.
For the first-order, isothermal reaction, the Thiele modulus is independent of A
concentration, and is therefore independent of axial position in the bed

Φ = R
3

√
k

DA
= 0.3cm

3

√
2.6s−1

0.007cm2/s
= 1.93

The effectiveness factor is also therefore a constant

η = 1
Φ

[
1

tanh3Φ
− 1

3Φ

]
= 1

1.93

[
1− 1

5.78

]
= 0.429

We express the concentration of A in terms of molar flows for an ideal-gas mixture

cA =
P

RT

(
NA

NA +NB

)
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Solution II

The total molar flow is constant due to the reaction stoichiometry so
NA +NB = NAf and we have

cA =
P

RT
NA

NAf

Substituting these values into the material balance, rearranging and integrating
over the volume gives

VR = −(1− εB)
(

RTNAf

ηkP

)∫ 0.03NAf

NAf

dNA

NA

VR = −
(

0.6
0.85

)
(82.06)(450)(12)
(0.429)(2.6)(1.5)

ln(0.03) = 1.32× 106cm3

and

Wc = ρBVR =
0.6

1000

(
1.32× 106

)
= 789 kg

We see from this example that if the Thiele modulus and effectiveness factors are
constant, finding the size of a fixed-bed reactor is no more difficult than finding
the size of a plug-flow reactor.
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Mass-transfer limitations in a fixed-bed reactor

Reconsider Example 7.3 given the following two values of the mass-transfer
coefficient

km1 = 0.07 cm/s

km2 = 1.4 cm/s
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Solution I

First we calculate the Biot numbers from Equation 7.55 and obtain

B1 =
(0.07)(0.1)
(0.007)

= 1

B2 =
(1.4)(0.1)
(0.007)

= 20

Inspection of Figure 7.17 indicates that we expect a significant reduction in the
effectiveness factor due to mass-transfer resistance in the first case, and little
effect in the second case. Evaluating the effectiveness factors with Equation 7.58
indeed shows

η1 = 0.165

η2 = 0.397

which we can compare to η = 0.429 from the previous example with no
mass-transfer resistance. We can then easily calculate the required catalyst mass
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Solution II

from the solution of the previous example without mass-transfer limitations, and
the new values of the effectiveness factors

VR1 =
(

0.429
0.165

)
(789) = 2051 kg

VR2 =
(

0.429
0.397

)
(789) = 852 kg

As we can see, the first mass-transfer coefficient is so small that more than twice
as much catalyst is required to achieve the desired conversion compared to the
case without mass-transfer limitations. The second mass-transfer coefficient is
large enough that only 8% more catalyst is required.
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Second-order, isothermal fixed-bed reactor

Estimate the mass of catalyst required in an isothermal fixed-bed reactor for the
second-order, heterogeneous reaction.

A
k
-→ B

r = kc2
A k = 2.25× 105cm3/mol s

The gas feed consists of A and an inert, each with molar flowrate of 10 mol/s, the
total pressure is 4.0 atm and the temperature is 550 K. The desired conversion of
A is 75%. The catalyst is a spherical pellet with a radius of 0.45 cm. The pellet
density is ρp = 0.68 g/cm3 and the bed density is ρB = 0.60 g/cm3. The effective
diffusivity of A is 0.008 cm2/s and may be assumed constant. You may assume
the fluid and pellet surface concentrations are equal.
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Solution I

We solve the fixed-bed design equation

dNA

dV
= RA = −(1− εB)ηkc2

A

NA(0) = NAf (7.78)

between the limits NAf and 0.25NAf . We again express the concentration of A in
terms of the molar flows

cA =
P

RT

(
NA

NA +NB +NI

)
As in the previous example, the total molar flow is constant and we know its value
at the entrance to the reactor

NT = NAf +NBf +NIf = 2NAf

Therefore,

cA =
P

RT
NA

2NAf
(7.79)
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Solution II

Next we use the definition of Φ for nth-order reactions given in Equation 7.42

Φ = R
3

[
(n + 1)kcn−1

A

2DA

]1/2

= R
3

 (n + 1)k
2DA

(
P

RT
NA

2NAf

)n−1
1/2

(7.80)

Substituting in the parameter values gives

Φ = 9.17

(
NA

2NAf

)1/2

(7.81)

For the second-order reaction, Equation 7.81 shows that Φ varies with the molar
flow, which means Φ and η vary along the length of the reactor as NA decreases.
We are asked to estimate the catalyst mass needed to achieve a conversion of A
equal to 75%. So for this particular example, Φ decreases from 6.49 to 3.24. As
shown in Figure 7.9, we can approximate the effectiveness factor for the
second-order reaction using the analytical result for the first-order reaction,
Equation 7.38,

η = 1
Φ

[
1

tanh3Φ
− 1

3Φ

]
(7.82)
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Solution III

Summarizing so far, to compute NA versus VR, we solve one differential equation,
Equation 7.78, in which we use Equation 7.79 for cA, and Equations 7.81 and 7.82
for Φ and η. We march in VR until NA = 0.25NAf . The solution to the differential
equation is shown in Figure 7.26.
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Solution IV
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Solution V

Figure 7.26: Molar flow of A versus reactor volume for second-order, isothermal reaction in
a fixed-bed reactor.

The required reactor volume and mass of catalyst are:

VR = 361 L, Wc = ρBVR = 216 kg

As a final exercise, given that Φ ranges from 6.49 to 3.24, we can make the large
Φ approximation

η = 1
Φ

(7.83)

to obtain a closed-form solution. If we substitute this approximation for η, and
Equation 7.80 into Equation 7.78 and rearrange we obtain

dNA

dV
= −(1− εB)

√
k (P/RT )3/2

(R/3)
√

3/DA(2NAf )3/2
N3/2

A
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Solution VI

Separating and integrating this differential equation gives

VR =
4
[
(1− xA)−1/2 − 1

]
NAf (R/3)

√
3/DA

(1− εB)
√

k (P/RT )3/2
(7.84)

Large Φ approximation

The results for the large Φ approximation also are shown in Figure 7.26. Notice
from Figure 7.9 that we are slightly overestimating the value of η using
Equation 7.83, so we underestimate the required reactor volume. The reactor size
and the percent change in reactor size are

VR = 333 L, ∆ = −7.7%

Given that we have a result valid for all Φ that requires solving only a single
differential equation, one might question the value of this closed-form solution.
One advantage is purely practical. We may not have a computer available.
Instructors are usually thinking about in-class examination problems at this
juncture. The other important advantage is insight. It is not readily apparent from
the differential equation what would happen to the reactor size if we double the
pellet size, or halve the rate constant, for example. Equation 7.84, on the other
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Solution VII

hand, provides the solution’s dependence on all parameters. As shown in
Figure 7.26 the approximation error is small. Remember to check that the Thiele
modulus is large for the entire tube length, however, before using Equation 7.84.
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Hougen-Watson kinetics in a fixed-bed reactor

The following reaction converting CO to CO2 takes place in a catalytic, fixed-bed
reactor operating isothermally at 838 K and 1.0 atm

CO+ 1/2O2 -→ CO2

The following rate expression and parameters are adapted from a different model
given by Oh et al. [8]. The rate expression is assumed to be of the Hougen-Watson
form

r = kcCOcO2

1+ KcCO
mol/s cm3 pellet

The constants are provided below

k = 8.73× 1012 exp(−13,500/T ) cm3/mol s

K = 8.099× 106 exp(409/T ) cm3/mol

DCO = 0.0487 cm2/s

in which T is in Kelvin. The catalyst pellet radius is 0.1 cm. The feed to the reactor
consists of 2 mol% CO, 10 mol% O2, zero CO2 and the remainder inerts. Find the
reactor volume required to achieve 95% conversion of the CO.
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Solution

Given the reaction stoichiometry and the excess of O2, we can neglect the change
in cO2 and approximate the reaction as pseudo-first order in CO

r = k′cCO

1+ KcCO
mol/s cm3 pellet

k′ = kcO2f

which is of the form analyzed in Section 7.4.4. We can write the mass balance for
the molar flow of CO,

dNCO

dV
= −(1− εB)ηr(cCO)

in which cCO is the fluid CO concentration. From the reaction stoichiometry, we
can express the remaining molar flows in terms of NCO

NO2 = NO2f + 1/2(NCO −NCOf )

NCO2 = NCOf −NCO

N = NO2f + 1/2(NCO +NCOf )

The concentrations follow from the molar flows assuming an ideal-gas mixture

cj =
P

RT
Nj

N
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Figure 7.27: Molar concentrations versus reactor volume.
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Figure 7.28: Dimensionless equilibrium constant and Thiele modulus versus reactor
volume. Values indicate η = 1/Φ is a good approximation for entire reactor.

To decide how to approximate the effectiveness factor shown in Figure 7.14, we
evaluate φ = KC0cC0, at the entrance and exit of the fixed-bed reactor. With φ
evaluated, we compute the Thiele modulus given in Equation 7.52 and obtain

φ = 32.0 Φ= 79.8, entrance

φ = 1.74 Φ = 326, exit

It is clear from these values and Figure 7.14 that η = 1/Φ is an excellent
approximation for this reactor. Substituting this equation for η into the mass
balance and solving the differential equation produces the results shown in
Figure 7.27. The concentration of O2 is nearly constant, which justifies the
pseudo-first-order rate expression. Reactor volume

VR = 233 L

is required to achieve 95% conversion of the CO. Recall that the volumetric
flowrate varies in this reactor so conversion is based on molar flow, not molar
concentration. Figure 7.28 shows how Φ and φ vary with position in the reactor.
In the previous examples, we have exploited the idea of an effectiveness factor to
reduce fixed-bed reactor models to the same form as plug-flow reactor models.
This approach is useful and solves several important cases, but this approach is
also limited and can take us only so far. In the general case, we must contend with
multiple reactions that are not first order, nonconstant thermochemical
properties, and nonisothermal behavior in the pellet and the fluid. For these
cases, we have no alternative but to solve numerically for the temperature and
species concentrations profiles in both the pellet and the bed. As a final example,
we compute the numerical solution to a problem of this type.
We use the collocation method to solve the next example, which involves five
species, two reactions with Hougen-Watson kinetics, both diffusion and external
mass-transfer limitations, and nonconstant fluid temperature, pressure and
volumetric flowrate.
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Multiple-reaction, nonisothermal fixed-bed reactor

Evaluate the performance of the catalytic converter in converting CO and
propylene.
Determine the amount of catalyst required to convert 99.6% of the CO and
propylene.
The reaction chemistry and pellet mass-transfer parameters are given in Table 7.5.
The feed conditions and heat-transfer parameters are given in Table 7.6.
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Feed conditions and heat-transfer parameters

Parameter Value Units
Pf 2.02× 105 N/m2

Tf 550 K
Rt 5.0 cm
uf 75 cm/s
Ta 325 K
Uo 5.5× 10−3 cal/(cm2 Ks)
∆HR1 −67.63× 103 cal/(mol CO K)
∆HR2 −460.4× 103 cal/(mol C3H6 K)

Cp 0.25 cal/(g K)
µf 0.028× 10−2 g/(cm s)
ρb 0.51 g/cm3

ρp 0.68 g/cm3

Table 7.6: Feed flowrate and heat-transfer parameters for the fixed-bed catalytic converter.
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Solution

The fluid balances govern the change in the fluid concentrations, temperature
and pressure.

The pellet concentration profiles are solved with the collocation approach.

The pellet and fluid concentrations are coupled through the mass-transfer
boundary condition.

The fluid concentrations are shown in Figure 7.29.

A bed volume of 1098 cm3 is required to convert the CO and C3H6.
Figure 7.29 also shows that oxygen is in slight excess.
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Figure 7.29: Fluid molar concentrations versus reactor volume.
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Solution I

The reactor temperature and pressure are shown in Figure 7.30.
The feed enters at 550 K, and the reactor experiences about a 130 K
temperature rise while the reaction essentially completes; the heat losses
then reduce the temperature to less than 500 K by the exit.

The pressure drops from the feed value of 2.0 atm to 1.55 atm at the exit.
Notice the catalytic converter exit pressure of 1.55 atm must be large enough
to account for the remaining pressure drops in the tail pipe and muffler.
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Solution II
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Figure 7.30: Fluid temperature and pressure versus reactor volume.
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Solution

In Figures 7.31 and 7.32, the pellet CO concentration profile at several reactor
positions is displayed.

We see that as the reactor heats up, the reaction rates become large and the
CO is rapidly converted inside the pellet.

By 490 cm3 in the reactor, the pellet exterior CO concentration has dropped
by two orders of magnitude, and the profile inside the pellet has become very
steep.

As the reactions go to completion and the heat losses cool the reactor, the
reaction rates drop. At 890 cm3, the CO begins to diffuse back into the pellet.

Finally, the profiles become much flatter near the exit of the reactor.
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It can be numerically challenging to calculate rapid changes and steep profiles
inside the pellet.

The good news, however, is that accurate pellet profiles are generally not
required for an accurate calculation of the overall pellet reaction rate. The
reason is that when steep profiles are present, essentially all of the reaction
occurs in a thin shell near the pellet exterior.

We can calculate accurately down to concentrations on the order of 10−15 as
shown in Figure 7.32, and by that point, essentially zero reaction is occurring,
and we can calculate an accurate overall pellet reaction rate.

It is always a good idea to vary the numerical approximation in the pellet
profile, by changing the number of collocation points, to ensure convergence
in the fluid profiles.

Congratulations, we have finished the most difficult example in the text.
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Summary

This chapter treated the fixed-bed reactor, a tubular reactor packed with
catalyst pellets.

We started with a general overview of the transport and reaction events that
take place in the fixed-bed reactor: transport by convection in the fluid;
diffusion inside the catalyst pores; and adsorption, reaction and desorption
on the catalyst surface.

In order to simplify the model, we assumed an effective diffusivity could be
used to describe diffusion in the catalyst particles.

We next presented the general mass and energy balances for the catalyst
particle.

151 / 160



Summary

Next we solved a series of reaction-diffusion problems in a single catalyst
particle. These included:

Single reaction in an isothermal pellet. This case was further divided into a
number of special cases.

First-order, irreversible reaction in a spherical particle.
Reaction in a semi-infinite slab and cylindrical particle.
nth order, irreversible reaction.
Hougen-Watson rate expressions.
Particle with significant external mass-transfer resistance.

Single reaction in a nonisothermal pellet.
Multiple reactions.
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Summary

For the single-reaction cases, we found a dimensionless number, the Thiele
modulus (Φ), which measures the rate of production divided by the rate of
diffusion of some component.

We summarized the production rate using the effectiveness factor (η), the
ratio of actual rate to rate evaluated at the pellet exterior surface conditions.

For the single-reaction, nonisothermal problem, we solved the so-called
Weisz-Hicks problem, and determined the temperature and concentration
profiles within the pellet. We showed the effectiveness factor can be greater
than unity for this case. Multiple steady-state solutions also are possible for
this problem.

For complex reactions involving many species, we must solve numerically the
complete reaction-diffusion problem. These problems are challenging
because of the steep pellet profiles that are possible.
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Summary

Finally, we showed several ways to couple the mass and energy balances over
the fluid flowing through a fixed-bed reactor to the balances within the pellet.

For simple reaction mechanisms, we were still able to use the effectiveness
factor approach to solve the fixed-bed reactor problem.

For complex mechanisms, we solved numerically the full problem given in
Equations 7.67–7.77.

We solved the reaction-diffusion problem in the pellet coupled to the mass
and energy balances for the fluid, and we used the Ergun equation to
calculate the pressure in the fluid.
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Notation I

a characteristic pellet length, Vp/Sp

Ac reactor cross-sectional area
B Biot number for external mass transfer
c constant for the BET isotherm
cj concentration of species j
cjs concentration of species j at the catalyst surface
c dimensionless pellet concentration
cm total number of active surface sites
DAB binary diffusion coefficient
Dj effective diffusion coefficient for species j
DjK Knudsen diffusion coefficient for species j
Djm diffusion coefficient for species j in the mixture
Dp pellet diameter
Ediff activation energy for diffusion
Eobs experimental activation energy
Erxn intrinsic activation energy for the reaction
∆HRi heat of reaction i
Ij rate of transport of species j into a pellet
I0 modified Bessel function of the first kind, zero order
I1 modified Bessel function of the first kind, first order
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Notation II

ke effective thermal conductivity of the pellet
kmj mass-transfer coefficient for species j
kn nth-order reaction rate constant
L pore length
Mj molecular weight of species j
nr number of reactions in the reaction network
N total molar flow,

∑
j Nj

Nj molar flow of species j
P pressure
Q volumetric flowrate
r radial coordinate in catalyst particle
ra average pore radius
ri rate of reaction i per unit reactor volume
robs observed (or experimental) rate of reaction in the pellet
rip total rate of reaction i per unit catalyst volume
r dimensionless radial coordinate
R spherical pellet radius
R gas constant
Rj production rate of species j
Rjf production rate of species j at bulk fluid conditions
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Notation III

Rjp total production rate of species j per unit catalyst volume
Rjs production rate of species j at the pellet surface conditions
Sg BET area per gram of catalyst
Sp external surface area of the catalyst pellet
T temperature
Tf bulk fluid temperature
Ts pellet surface temperature
Uo overall heat-transfer coefficient
v volume of gas adsorbed in the BET isotherm
vm volume of gas corresponding to an adsorbed monolayer
V reactor volume coordinate
Vg pellet void volume per gram of catalyst
Vp volume of the catalyst pellet
VR reactor volume
Wc total mass of catalyst in the reactor
yj mole fraction of species j
z position coordinate in a slab
ε porosity of the catalyst pellet
εB fixed-bed porosity or void fraction
η effectiveness factor
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Notation IV

λ mean free path
µf bulk fluid density
νij stoichiometric number for the jth species in the ith reaction
ξ integral of a diffusing species over a bounding surface
ρ bulk fluid density
ρB reactor bed density
ρp overall catalyst pellet density
ρs catalyst solid-phase density
σ hard sphere collision radius
τ tortuosity factor
Φ Thiele modulus
ΩD,AB dimensionless function of temperature and the intermolecular potential field for

one molecule of A and one molecule of B
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